Tips and Tricks to Improve CNN-based Chest X-ray Diagnosis: A Survey
Convolutional Neural Networks (CNNs) intrinsically requires large-scale data whereas Chest X-Ray (CXR) images tend to be data/annotation-scarce, leading to over-fitting. Therefore, based on our development experience and related work, this paper thoroughly introduces tricks to improve generalization...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2021-06 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Convolutional Neural Networks (CNNs) intrinsically requires large-scale data whereas Chest X-Ray (CXR) images tend to be data/annotation-scarce, leading to over-fitting. Therefore, based on our development experience and related work, this paper thoroughly introduces tricks to improve generalization in the CXR diagnosis: how to (i) leverage additional data, (ii) augment/distillate data, (iii) regularize training, and (iv) conduct efficient segmentation. As a development example based on such optimization techniques, we also feature LPIXEL's CNN-based CXR solution, EIRL Chest Nodule, which improved radiologists/non-radiologists' nodule detection sensitivity by 0.100/0.131, respectively, while maintaining specificity. |
---|---|
ISSN: | 2331-8422 |