Multi-scale topology optimization for stiffness and de-homogenization using implicit geometry modeling

In this article, we demonstrate the state-of-the-art of multi-scale topology optimization for 3D structural design. Many structures designed for additive manufacturing consist of a solid shell surrounding repeated microstructures, so-called infill material. We demonstrate the performance of differen...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Structural and multidisciplinary optimization 2021-06, Vol.63 (6), p.2919-2934
Hauptverfasser: Groen, J. P., Thomsen, C. R., Sigmund, O.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this article, we demonstrate the state-of-the-art of multi-scale topology optimization for 3D structural design. Many structures designed for additive manufacturing consist of a solid shell surrounding repeated microstructures, so-called infill material. We demonstrate the performance of different types of infill microstructures, such as isotropic truss or plate lattice structures and show that the best results can be obtained using spatially varying and oriented orthotropic microstructures. Furthermore, we demonstrate how implicit geometry modeling using nTop platform can help to interpret these multi-scale designs as single-scale manufacturable designs (de-homogenization). More importantly, we demonstrate the small difference in performance between these multi-scale and single-scale designs through extensive numerical testing. The presented method is at least 3 orders of magnitude more efficient compared to standard density-based topology optimization, allowing for high-resolution 3D structures to be obtained on a standard workstation PC.
ISSN:1615-147X
1615-1488
DOI:10.1007/s00158-021-02874-7