Benchmarking machine learning algorithms for adaptive quantum phase estimation with noisy intermediate-scale quantum sensors

Quantum phase estimation is a paradigmatic problem in quantum sensing and metrology. Here we show that adaptive methods based on classical machine learning algorithms can be used to enhance the precision of quantum phase estimation when noisy non-entangled qubits are used as sensors. We employ the D...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:EPJ Quantum Technology 2021-12, Vol.8 (1), Article 16
Hauptverfasser: Costa, Nelson Filipe, Omar, Yasser, Sultanov, Aidar, Paraoanu, Gheorghe Sorin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Quantum phase estimation is a paradigmatic problem in quantum sensing and metrology. Here we show that adaptive methods based on classical machine learning algorithms can be used to enhance the precision of quantum phase estimation when noisy non-entangled qubits are used as sensors. We employ the Differential Evolution (DE) and Particle Swarm Optimization (PSO) algorithms to this task and we identify the optimal feedback policies which minimize the Holevo variance. We benchmark these schemes with respect to scenarios that include Gaussian and Random Telegraph fluctuations as well as reduced Ramsey-fringe visibility due to decoherence. We discuss their robustness against noise in connection with real experimental setups such as Mach–Zehnder interferometry with optical photons and Ramsey interferometry in trapped ions, superconducting qubits and nitrogen-vacancy (NV) centers in diamond.
ISSN:2662-4400
2196-0763
DOI:10.1140/epjqt/s40507-021-00105-y