Anti‐synchronization of chaotic systems using a fractional conformable derivative with power law

In this paper, we propose a new numerical method based on two‐step Lagrange polynomial interpolation to get numerical simulations and adaptive anti‐synchronization schemes for two fractional conformable attractors of variable order. It was considered the fractional conformable derivative in Liouvill...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical methods in the applied sciences 2021-07, Vol.44 (10), p.8286-8301
Hauptverfasser: Solís‐Pérez, Jesús Emmanuel, Gómez‐Aguilar, José Francisco, Baleanu, Dumitru, Tchier, Fairouz, Ragoub, Lakhdar
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we propose a new numerical method based on two‐step Lagrange polynomial interpolation to get numerical simulations and adaptive anti‐synchronization schemes for two fractional conformable attractors of variable order. It was considered the fractional conformable derivative in Liouville‐Caputo sense. The novel numerical method was applied to derive new results from the anti‐synchronization of the identical uncertain Wang‐Sun attractors and three‐dimensional chaotic system using fractional conformable sliding mode control. Numerical examples show the effectiveness of the adaptive fractional conformable anti‐synchronization schemes for the uncertain chaotic systems considered in this paper.
ISSN:0170-4214
1099-1476
DOI:10.1002/mma.5967