Polycondensation Kinetics: 4. Growth of Acyclic Randomly Branched Chains

Master equations for concentrations of nb -mers ( n is the number of units, b is the number of branch points randomly located among the units) in the polycondensation of trifunctional monomers (PC-3) take into account the set of irreversible consecutive–parallel reactions between functional groups (...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:High energy chemistry 2021-05, Vol.55 (3), p.169-178
Hauptverfasser: Kim, I. P., Kotkin, A. S., Benderskii, V. A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Master equations for concentrations of nb -mers ( n is the number of units, b is the number of branch points randomly located among the units) in the polycondensation of trifunctional monomers (PC-3) take into account the set of irreversible consecutive–parallel reactions between functional groups ( n , b ) and ( n ′,  b ′)-mers with rate constants χ( b , b ′). Stoichiometric coefficients are equal to the number of permutations of bond-forming groups at ∆( b + b ′) = 0, 1, 2. Reaction coordinates are combined into a network of an inhomogeneous Markov process. It is shown that the Flory hypothesis (all χ( b , b ′) values are identical) leads to an explicitly time-independent Gaussian distribution W n ( b ) with a maximum b max that grows linearly with the chain length n .
ISSN:0018-1439
1608-3148
DOI:10.1134/S0018143921030061