The Cayley Cubic and Differential Equations

We define Cayley structures as a field of Cayley’s ruled cubic surfaces over a four dimensional manifold and motivate their study by showing their similarity to indefinite conformal structures and their link to differential equations and the theory of integrable systems. In particular, for Cayley st...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of Geometric Analysis 2021-06, Vol.31 (6), p.6219-6273
Hauptverfasser: Kryński, Wojciech, Makhmali, Omid
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We define Cayley structures as a field of Cayley’s ruled cubic surfaces over a four dimensional manifold and motivate their study by showing their similarity to indefinite conformal structures and their link to differential equations and the theory of integrable systems. In particular, for Cayley structures an extension of certain notions defined for indefinite conformal structures in dimension four are introduced, e.g., half-flatness, existence of a null foliation, ultra-half-flatness, an associated pair of second order ODEs, and a dispersionless Lax pair. After solving the equivalence problem we obtain the fundamental invariants, find the local generality of several classes of Cayley structures and give examples.
ISSN:1050-6926
1559-002X
DOI:10.1007/s12220-020-00525-9