Schur Functors and Categorified Plethysm

It is known that the Grothendieck group of the category of Schur functors is the ring of symmetric functions. This ring has a rich structure, much of which is encapsulated in the fact that it is a "plethory": a monoid in the category of birings with its substitution monoidal structure. We...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2023-06
Hauptverfasser: Baez, John C, Moeller, Joe, Trimble, Todd
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:It is known that the Grothendieck group of the category of Schur functors is the ring of symmetric functions. This ring has a rich structure, much of which is encapsulated in the fact that it is a "plethory": a monoid in the category of birings with its substitution monoidal structure. We show that similarly the category of Schur functors is a "2-plethory", which descends to give the plethory structure on symmetric functions. Thus, much of the structure of symmetric functions exists at a higher level in the category of Schur functors.
ISSN:2331-8422