Schur Functors and Categorified Plethysm
It is known that the Grothendieck group of the category of Schur functors is the ring of symmetric functions. This ring has a rich structure, much of which is encapsulated in the fact that it is a "plethory": a monoid in the category of birings with its substitution monoidal structure. We...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2023-06 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | It is known that the Grothendieck group of the category of Schur functors is the ring of symmetric functions. This ring has a rich structure, much of which is encapsulated in the fact that it is a "plethory": a monoid in the category of birings with its substitution monoidal structure. We show that similarly the category of Schur functors is a "2-plethory", which descends to give the plethory structure on symmetric functions. Thus, much of the structure of symmetric functions exists at a higher level in the category of Schur functors. |
---|---|
ISSN: | 2331-8422 |