Multi-Objective Ant Lion Optimizer Based on Time Weight

Multi-objective evolutionary algorithms are widely used in many engineering optimization problems and artificial intelligence applications. Ant lion optimizer is an outstanding evolutionary method, but two issues need to be solved to extend it to the multi-objective optimization field, one is how to...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEICE Transactions on Information and Systems 2021/06/01, Vol.E104.D(6), pp.901-904
Hauptverfasser: LIU, Yi, QIN, Wei, ZHANG, Jinhui, LI, Mengmeng, ZHENG, Qibin, WANG, Jichuan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Multi-objective evolutionary algorithms are widely used in many engineering optimization problems and artificial intelligence applications. Ant lion optimizer is an outstanding evolutionary method, but two issues need to be solved to extend it to the multi-objective optimization field, one is how to update the Pareto archive, and the other is how to choose elite and ant lions from archive. We develop a novel multi-objective variant of ant lion optimizer in this paper. A new measure combining Pareto dominance relation and distance information of individuals is put forward and used to tackle the first issue. The concept of time weight is developed to handle the second problem. Besides, mutation operation is adopted on solutions in middle part of archive to further improve its performance. Eleven functions, other four algorithms and four indicators are taken to evaluate the new method. The results show that proposed algorithm has better performance and lower time complexity.
ISSN:0916-8532
1745-1361
DOI:10.1587/transinf.2021EDL8009