Building Change Detection by Using Past Map Information and Optical Aerial Images

This paper proposes a change detection method for buildings based on convolutional neural networks. The proposed method detects building changes from pairs of optical aerial images and past map information concerning buildings. Using high-resolution image pair and past map information seamlessly, th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEICE Transactions on Information and Systems 2021/06/01, Vol.E104.D(6), pp.897-900
Hauptverfasser: TAKAGI, Motohiro, HAYASE, Kazuya, KITAHARA, Masaki, SHIMAMURA, Jun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper proposes a change detection method for buildings based on convolutional neural networks. The proposed method detects building changes from pairs of optical aerial images and past map information concerning buildings. Using high-resolution image pair and past map information seamlessly, the proposed method can capture the building areas more precisely compared to a conventional method. Our experimental results show that the proposed method outperforms the conventional change detection method that uses optical aerial images to detect building changes.
ISSN:0916-8532
1745-1361
DOI:10.1587/transinf.2020EDL8129