Convolutional neural network for multiple particle identification in the MicroBooNE liquid argon time projection chamber

We present the multiple particle identification (MPID) network, a convolutional neural network for multiple object classification, developed by MicroBooNE. MPID provides the probabilities that an interaction includes an e(-), gamma, mu(-), pi(+/-), and protons in a liquid argon time projection chamb...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review. D 2021-05, Vol.103 (9), p.1, Article 092003
Hauptverfasser: Abratenko, P., Alrashed, M., An, R., Anthony, J., Asaadi, J., Ashkenazi, A., Balasubramanian, S., Baller, B., Barnes, C., Barr, G., Basque, Bathe-Peters, L., Rodrigues, O. Benevides, Berkman, S., Bhanderi, A., Bhat, A., Bishai, M., Blake, A., Bolton, T., Camilleri, L., Caratelli, D., Terrazas, I. Caro, Fernandez, R. Castillo, Cavanna, F., Cerati, G., Chen, Y., Church, E., Cianci, D., Conrad, J. M., Convery, M., Cooper-Troendle, L., Crespo-Anadon, J., Del Tutto, M., Devitt, D., Diurba, R., Domine, L., Dorrill, R., Duffy, K., Dytman, S., Eberly, B., Ereditato, A., Sanchez, L. Escudero, Evans, J. J., Aguirre, G. A. Fiorentini, Fitzpatrick, R. S., Fleming, B. T., Foppiani, N., Franco, D., Furmanski, A. P., Garcia-Gamez, D., Gardiner, S., Ge, G., Gollapinni, S., Goodwin, O., Gramellini, E., Green, P., Greenlee, H., Gu, W., Guenette, R., Guzowski, P., Hall, E., Hamilton, P., Hen, O., Horton-Smith, G. A., Hourlier, A., Huang, E-C, Itay, R., James, C., de Vries, J. Jan, Ji, X., Jiang, L., Jo, J. H., Johnson, R. A., Jwa, Y-J, Kamp, N., Karagiorgi, G., Ketchum, W., Kirby, B., Kirby, M., Kobilarcik, T., Kreslo, LaZur, R., Lepetic, Li, K., Li, Y., Littlejohn, B. R., Lorca, D., Louis, W. C., Luo, X., Marchionni, A., Marcocci, S., Mariani, C., Marsden, D., Marshall, J., Martin-Albo, J., Caicedo, D. A. Martinez, Mason, K., Mastbaum, A., McConkey, N., Meddage
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We present the multiple particle identification (MPID) network, a convolutional neural network for multiple object classification, developed by MicroBooNE. MPID provides the probabilities that an interaction includes an e(-), gamma, mu(-), pi(+/-), and protons in a liquid argon time projection chamber single readout plane. The network extends the single particle identification network previously developed by MicroBooNE [Convolutional neural networks applied to neutrino events in a liquid argon time projection chamber, R. Acciarri et al. J. Instrum. 12, P03011 (2017)]. MPID takes as input an image either cropped around a reconstructed interaction vertex or containing only activity connected to a reconstructed vertex, therefore relieving the tool from inefficiencies in vertex finding and particle clustering. The network serves as an important component in MicroBooNE's deep-learning-based.e search analysis. In this paper, we present the network's design, training, and performance on simulation and data from the MicroBooNE detector.
ISSN:2470-0010
2470-0029
DOI:10.1103/PhysRevD.103.092003