Extending the application of the light-cone sum rules method to low momenta using QCD renormalization-group summation: Theory and phenomenology
We show that using renormalization-group summation to generate the QCD radiative corrections to the π − γ transition form factor, calculated with light-cone sum rules (LCSR), renders the strong coupling free of Landau singularities while preserving the QCD form-factor asymptotics. This enables a rel...
Gespeichert in:
Veröffentlicht in: | Physical review. D 2021-05, Vol.103 (9), p.1, Article 096003 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We show that using renormalization-group summation to generate the QCD radiative corrections to the π − γ transition form factor, calculated with light-cone sum rules (LCSR), renders the strong coupling free of Landau singularities while preserving the QCD form-factor asymptotics. This enables a reliable applicability of the LCSR method to momenta well below 1 GeV2. This way, one can use the new preliminary BESIII data with unprecedented accuracy below 1.5 GeV2 to fine tune the prefactor of the twist-six contribution. Using a combined fit to all available data below 3.1 GeV2, we are able to determine all nonperturbative scale parameters and a few Gegenbauer coefficients entering the calculation of the form factor. Employing these ingredients, we determine a pion distribution amplitude with conformal coefficients (b2, b4) that agree at the 1 σ level with the data for Q2 ≤ 3.1 GeV2 and fulfill at the same time the lattice constraints on b2 at N3 LO together with the constraints from QCD sum rules with nonlocal condensates. The form-factor prediction calculated herewith reproduces the data below 1 GeV2 significantly better than analogous predictions based on a fixed-order power-series expansion in the strong coupling constant. |
---|---|
ISSN: | 2470-0010 2470-0029 |
DOI: | 10.1103/PhysRevD.103.096003 |