Emergent geometry and path integral optimization for a Lifshitz action
Extending the background metric optimization procedure for Euclidean path integrals of two-dimensional conformal field theories, introduced by Caputa et al. [Phys. Rev. Lett. 119, 071602 (2017), J. High Energy Phys. 11 (2017) 097], to a z = 2 anisotropically scale-invariant ( 2 + 1 ) -dimensional Li...
Gespeichert in:
Veröffentlicht in: | Physical review. D 2021-05, Vol.103 (10), p.1, Article 105013 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 10 |
container_start_page | 1 |
container_title | Physical review. D |
container_volume | 103 |
creator | Ahmadain, A. Klich, I. |
description | Extending the background metric optimization procedure for Euclidean path integrals of two-dimensional conformal field theories, introduced by Caputa et al. [Phys. Rev. Lett. 119, 071602 (2017), J. High Energy Phys. 11 (2017) 097], to a z = 2 anisotropically scale-invariant ( 2 + 1 ) -dimensional Lifshitz field theory of a free massless scalar field, we find optimal geometries for static and dynamic correlation functions. For the static correlation functions, the optimal background metric is equivalent to an AdS metric on a Poincaré patch, while for dynamical correlation functions, we find Lifshitz like metric. This results suggest that a MERA-like tensor network, perhaps without unitarity, would still be considered an optimal background spacetime configuration for the numerical description of this system, even though the classical action we start with is not a conformal field theory. |
doi_str_mv | 10.1103/PhysRevD.103.105013 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2535883114</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2535883114</sourcerecordid><originalsourceid>FETCH-LOGICAL-c388t-262091262f6d6e56df8e69a01988739e6d3385eee9e489a24e7a477a4533947b3</originalsourceid><addsrcrecordid>eNo9UNFKAzEQDKJgqf0CXwI-X01u73LJo9TWCgVF9DnE3l6b0rucSSq0X2_KqQ-zO7MMszCE3HI25ZzB_ev2GN7w-3GaRELJOFyQUV5ULGMsV5f_nLNrMglhxxIVTFWcj8hi3qLfYBfpBl2L0R-p6Wram7iltou48WZPXR9ta08mWtfRxnlq6Mo2YWvjiZr1-XpDrhqzDzj53WPysZi_z5bZ6uXpefawytYgZcxykTPF02xELbAUdSNRKMO4krIChaIGkCUiKiykMnmBlSmqhBJAFdUnjMndkNt793XAEPXOHXyXXuq8hFJK4LxILhhca-9C8Njo3tvW-KPmTJ8703-d6bMYOoMfCthfxQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2535883114</pqid></control><display><type>article</type><title>Emergent geometry and path integral optimization for a Lifshitz action</title><source>American Physical Society Journals</source><creator>Ahmadain, A. ; Klich, I.</creator><creatorcontrib>Ahmadain, A. ; Klich, I.</creatorcontrib><description>Extending the background metric optimization procedure for Euclidean path integrals of two-dimensional conformal field theories, introduced by Caputa et al. [Phys. Rev. Lett. 119, 071602 (2017), J. High Energy Phys. 11 (2017) 097], to a z = 2 anisotropically scale-invariant ( 2 + 1 ) -dimensional Lifshitz field theory of a free massless scalar field, we find optimal geometries for static and dynamic correlation functions. For the static correlation functions, the optimal background metric is equivalent to an AdS metric on a Poincaré patch, while for dynamical correlation functions, we find Lifshitz like metric. This results suggest that a MERA-like tensor network, perhaps without unitarity, would still be considered an optimal background spacetime configuration for the numerical description of this system, even though the classical action we start with is not a conformal field theory.</description><identifier>ISSN: 2470-0010</identifier><identifier>EISSN: 2470-0029</identifier><identifier>DOI: 10.1103/PhysRevD.103.105013</identifier><language>eng</language><publisher>College Park: American Physical Society</publisher><subject>Correlation ; Euclidean geometry ; Field theory ; Integrals ; Mathematical analysis ; Optimization ; Scalars ; Tensors</subject><ispartof>Physical review. D, 2021-05, Vol.103 (10), p.1, Article 105013</ispartof><rights>Copyright American Physical Society May 15, 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c388t-262091262f6d6e56df8e69a01988739e6d3385eee9e489a24e7a477a4533947b3</citedby><cites>FETCH-LOGICAL-c388t-262091262f6d6e56df8e69a01988739e6d3385eee9e489a24e7a477a4533947b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,2876,2877,27924,27925</link.rule.ids></links><search><creatorcontrib>Ahmadain, A.</creatorcontrib><creatorcontrib>Klich, I.</creatorcontrib><title>Emergent geometry and path integral optimization for a Lifshitz action</title><title>Physical review. D</title><description>Extending the background metric optimization procedure for Euclidean path integrals of two-dimensional conformal field theories, introduced by Caputa et al. [Phys. Rev. Lett. 119, 071602 (2017), J. High Energy Phys. 11 (2017) 097], to a z = 2 anisotropically scale-invariant ( 2 + 1 ) -dimensional Lifshitz field theory of a free massless scalar field, we find optimal geometries for static and dynamic correlation functions. For the static correlation functions, the optimal background metric is equivalent to an AdS metric on a Poincaré patch, while for dynamical correlation functions, we find Lifshitz like metric. This results suggest that a MERA-like tensor network, perhaps without unitarity, would still be considered an optimal background spacetime configuration for the numerical description of this system, even though the classical action we start with is not a conformal field theory.</description><subject>Correlation</subject><subject>Euclidean geometry</subject><subject>Field theory</subject><subject>Integrals</subject><subject>Mathematical analysis</subject><subject>Optimization</subject><subject>Scalars</subject><subject>Tensors</subject><issn>2470-0010</issn><issn>2470-0029</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNo9UNFKAzEQDKJgqf0CXwI-X01u73LJo9TWCgVF9DnE3l6b0rucSSq0X2_KqQ-zO7MMszCE3HI25ZzB_ev2GN7w-3GaRELJOFyQUV5ULGMsV5f_nLNrMglhxxIVTFWcj8hi3qLfYBfpBl2L0R-p6Wram7iltou48WZPXR9ta08mWtfRxnlq6Mo2YWvjiZr1-XpDrhqzDzj53WPysZi_z5bZ6uXpefawytYgZcxykTPF02xELbAUdSNRKMO4krIChaIGkCUiKiykMnmBlSmqhBJAFdUnjMndkNt793XAEPXOHXyXXuq8hFJK4LxILhhca-9C8Njo3tvW-KPmTJ8703-d6bMYOoMfCthfxQ</recordid><startdate>20210518</startdate><enddate>20210518</enddate><creator>Ahmadain, A.</creator><creator>Klich, I.</creator><general>American Physical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20210518</creationdate><title>Emergent geometry and path integral optimization for a Lifshitz action</title><author>Ahmadain, A. ; Klich, I.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c388t-262091262f6d6e56df8e69a01988739e6d3385eee9e489a24e7a477a4533947b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Correlation</topic><topic>Euclidean geometry</topic><topic>Field theory</topic><topic>Integrals</topic><topic>Mathematical analysis</topic><topic>Optimization</topic><topic>Scalars</topic><topic>Tensors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ahmadain, A.</creatorcontrib><creatorcontrib>Klich, I.</creatorcontrib><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physical review. D</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ahmadain, A.</au><au>Klich, I.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Emergent geometry and path integral optimization for a Lifshitz action</atitle><jtitle>Physical review. D</jtitle><date>2021-05-18</date><risdate>2021</risdate><volume>103</volume><issue>10</issue><spage>1</spage><pages>1-</pages><artnum>105013</artnum><issn>2470-0010</issn><eissn>2470-0029</eissn><abstract>Extending the background metric optimization procedure for Euclidean path integrals of two-dimensional conformal field theories, introduced by Caputa et al. [Phys. Rev. Lett. 119, 071602 (2017), J. High Energy Phys. 11 (2017) 097], to a z = 2 anisotropically scale-invariant ( 2 + 1 ) -dimensional Lifshitz field theory of a free massless scalar field, we find optimal geometries for static and dynamic correlation functions. For the static correlation functions, the optimal background metric is equivalent to an AdS metric on a Poincaré patch, while for dynamical correlation functions, we find Lifshitz like metric. This results suggest that a MERA-like tensor network, perhaps without unitarity, would still be considered an optimal background spacetime configuration for the numerical description of this system, even though the classical action we start with is not a conformal field theory.</abstract><cop>College Park</cop><pub>American Physical Society</pub><doi>10.1103/PhysRevD.103.105013</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2470-0010 |
ispartof | Physical review. D, 2021-05, Vol.103 (10), p.1, Article 105013 |
issn | 2470-0010 2470-0029 |
language | eng |
recordid | cdi_proquest_journals_2535883114 |
source | American Physical Society Journals |
subjects | Correlation Euclidean geometry Field theory Integrals Mathematical analysis Optimization Scalars Tensors |
title | Emergent geometry and path integral optimization for a Lifshitz action |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T14%3A54%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Emergent%20geometry%20and%20path%20integral%20optimization%20for%20a%20Lifshitz%20action&rft.jtitle=Physical%20review.%20D&rft.au=Ahmadain,%20A.&rft.date=2021-05-18&rft.volume=103&rft.issue=10&rft.spage=1&rft.pages=1-&rft.artnum=105013&rft.issn=2470-0010&rft.eissn=2470-0029&rft_id=info:doi/10.1103/PhysRevD.103.105013&rft_dat=%3Cproquest_cross%3E2535883114%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2535883114&rft_id=info:pmid/&rfr_iscdi=true |