Emergent geometry and path integral optimization for a Lifshitz action

Extending the background metric optimization procedure for Euclidean path integrals of two-dimensional conformal field theories, introduced by Caputa et al. [Phys. Rev. Lett. 119, 071602 (2017), J. High Energy Phys. 11 (2017) 097], to a z = 2 anisotropically scale-invariant ( 2 + 1 ) -dimensional Li...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review. D 2021-05, Vol.103 (10), p.1, Article 105013
Hauptverfasser: Ahmadain, A., Klich, I.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 10
container_start_page 1
container_title Physical review. D
container_volume 103
creator Ahmadain, A.
Klich, I.
description Extending the background metric optimization procedure for Euclidean path integrals of two-dimensional conformal field theories, introduced by Caputa et al. [Phys. Rev. Lett. 119, 071602 (2017), J. High Energy Phys. 11 (2017) 097], to a z = 2 anisotropically scale-invariant ( 2 + 1 ) -dimensional Lifshitz field theory of a free massless scalar field, we find optimal geometries for static and dynamic correlation functions. For the static correlation functions, the optimal background metric is equivalent to an AdS metric on a Poincaré patch, while for dynamical correlation functions, we find Lifshitz like metric. This results suggest that a MERA-like tensor network, perhaps without unitarity, would still be considered an optimal background spacetime configuration for the numerical description of this system, even though the classical action we start with is not a conformal field theory.
doi_str_mv 10.1103/PhysRevD.103.105013
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2535883114</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2535883114</sourcerecordid><originalsourceid>FETCH-LOGICAL-c388t-262091262f6d6e56df8e69a01988739e6d3385eee9e489a24e7a477a4533947b3</originalsourceid><addsrcrecordid>eNo9UNFKAzEQDKJgqf0CXwI-X01u73LJo9TWCgVF9DnE3l6b0rucSSq0X2_KqQ-zO7MMszCE3HI25ZzB_ev2GN7w-3GaRELJOFyQUV5ULGMsV5f_nLNrMglhxxIVTFWcj8hi3qLfYBfpBl2L0R-p6Wram7iltou48WZPXR9ta08mWtfRxnlq6Mo2YWvjiZr1-XpDrhqzDzj53WPysZi_z5bZ6uXpefawytYgZcxykTPF02xELbAUdSNRKMO4krIChaIGkCUiKiykMnmBlSmqhBJAFdUnjMndkNt793XAEPXOHXyXXuq8hFJK4LxILhhca-9C8Njo3tvW-KPmTJ8703-d6bMYOoMfCthfxQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2535883114</pqid></control><display><type>article</type><title>Emergent geometry and path integral optimization for a Lifshitz action</title><source>American Physical Society Journals</source><creator>Ahmadain, A. ; Klich, I.</creator><creatorcontrib>Ahmadain, A. ; Klich, I.</creatorcontrib><description>Extending the background metric optimization procedure for Euclidean path integrals of two-dimensional conformal field theories, introduced by Caputa et al. [Phys. Rev. Lett. 119, 071602 (2017), J. High Energy Phys. 11 (2017) 097], to a z = 2 anisotropically scale-invariant ( 2 + 1 ) -dimensional Lifshitz field theory of a free massless scalar field, we find optimal geometries for static and dynamic correlation functions. For the static correlation functions, the optimal background metric is equivalent to an AdS metric on a Poincaré patch, while for dynamical correlation functions, we find Lifshitz like metric. This results suggest that a MERA-like tensor network, perhaps without unitarity, would still be considered an optimal background spacetime configuration for the numerical description of this system, even though the classical action we start with is not a conformal field theory.</description><identifier>ISSN: 2470-0010</identifier><identifier>EISSN: 2470-0029</identifier><identifier>DOI: 10.1103/PhysRevD.103.105013</identifier><language>eng</language><publisher>College Park: American Physical Society</publisher><subject>Correlation ; Euclidean geometry ; Field theory ; Integrals ; Mathematical analysis ; Optimization ; Scalars ; Tensors</subject><ispartof>Physical review. D, 2021-05, Vol.103 (10), p.1, Article 105013</ispartof><rights>Copyright American Physical Society May 15, 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c388t-262091262f6d6e56df8e69a01988739e6d3385eee9e489a24e7a477a4533947b3</citedby><cites>FETCH-LOGICAL-c388t-262091262f6d6e56df8e69a01988739e6d3385eee9e489a24e7a477a4533947b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,2876,2877,27924,27925</link.rule.ids></links><search><creatorcontrib>Ahmadain, A.</creatorcontrib><creatorcontrib>Klich, I.</creatorcontrib><title>Emergent geometry and path integral optimization for a Lifshitz action</title><title>Physical review. D</title><description>Extending the background metric optimization procedure for Euclidean path integrals of two-dimensional conformal field theories, introduced by Caputa et al. [Phys. Rev. Lett. 119, 071602 (2017), J. High Energy Phys. 11 (2017) 097], to a z = 2 anisotropically scale-invariant ( 2 + 1 ) -dimensional Lifshitz field theory of a free massless scalar field, we find optimal geometries for static and dynamic correlation functions. For the static correlation functions, the optimal background metric is equivalent to an AdS metric on a Poincaré patch, while for dynamical correlation functions, we find Lifshitz like metric. This results suggest that a MERA-like tensor network, perhaps without unitarity, would still be considered an optimal background spacetime configuration for the numerical description of this system, even though the classical action we start with is not a conformal field theory.</description><subject>Correlation</subject><subject>Euclidean geometry</subject><subject>Field theory</subject><subject>Integrals</subject><subject>Mathematical analysis</subject><subject>Optimization</subject><subject>Scalars</subject><subject>Tensors</subject><issn>2470-0010</issn><issn>2470-0029</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNo9UNFKAzEQDKJgqf0CXwI-X01u73LJo9TWCgVF9DnE3l6b0rucSSq0X2_KqQ-zO7MMszCE3HI25ZzB_ev2GN7w-3GaRELJOFyQUV5ULGMsV5f_nLNrMglhxxIVTFWcj8hi3qLfYBfpBl2L0R-p6Wram7iltou48WZPXR9ta08mWtfRxnlq6Mo2YWvjiZr1-XpDrhqzDzj53WPysZi_z5bZ6uXpefawytYgZcxykTPF02xELbAUdSNRKMO4krIChaIGkCUiKiykMnmBlSmqhBJAFdUnjMndkNt793XAEPXOHXyXXuq8hFJK4LxILhhca-9C8Njo3tvW-KPmTJ8703-d6bMYOoMfCthfxQ</recordid><startdate>20210518</startdate><enddate>20210518</enddate><creator>Ahmadain, A.</creator><creator>Klich, I.</creator><general>American Physical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20210518</creationdate><title>Emergent geometry and path integral optimization for a Lifshitz action</title><author>Ahmadain, A. ; Klich, I.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c388t-262091262f6d6e56df8e69a01988739e6d3385eee9e489a24e7a477a4533947b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Correlation</topic><topic>Euclidean geometry</topic><topic>Field theory</topic><topic>Integrals</topic><topic>Mathematical analysis</topic><topic>Optimization</topic><topic>Scalars</topic><topic>Tensors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ahmadain, A.</creatorcontrib><creatorcontrib>Klich, I.</creatorcontrib><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physical review. D</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ahmadain, A.</au><au>Klich, I.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Emergent geometry and path integral optimization for a Lifshitz action</atitle><jtitle>Physical review. D</jtitle><date>2021-05-18</date><risdate>2021</risdate><volume>103</volume><issue>10</issue><spage>1</spage><pages>1-</pages><artnum>105013</artnum><issn>2470-0010</issn><eissn>2470-0029</eissn><abstract>Extending the background metric optimization procedure for Euclidean path integrals of two-dimensional conformal field theories, introduced by Caputa et al. [Phys. Rev. Lett. 119, 071602 (2017), J. High Energy Phys. 11 (2017) 097], to a z = 2 anisotropically scale-invariant ( 2 + 1 ) -dimensional Lifshitz field theory of a free massless scalar field, we find optimal geometries for static and dynamic correlation functions. For the static correlation functions, the optimal background metric is equivalent to an AdS metric on a Poincaré patch, while for dynamical correlation functions, we find Lifshitz like metric. This results suggest that a MERA-like tensor network, perhaps without unitarity, would still be considered an optimal background spacetime configuration for the numerical description of this system, even though the classical action we start with is not a conformal field theory.</abstract><cop>College Park</cop><pub>American Physical Society</pub><doi>10.1103/PhysRevD.103.105013</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2470-0010
ispartof Physical review. D, 2021-05, Vol.103 (10), p.1, Article 105013
issn 2470-0010
2470-0029
language eng
recordid cdi_proquest_journals_2535883114
source American Physical Society Journals
subjects Correlation
Euclidean geometry
Field theory
Integrals
Mathematical analysis
Optimization
Scalars
Tensors
title Emergent geometry and path integral optimization for a Lifshitz action
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T14%3A54%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Emergent%20geometry%20and%20path%20integral%20optimization%20for%20a%20Lifshitz%20action&rft.jtitle=Physical%20review.%20D&rft.au=Ahmadain,%20A.&rft.date=2021-05-18&rft.volume=103&rft.issue=10&rft.spage=1&rft.pages=1-&rft.artnum=105013&rft.issn=2470-0010&rft.eissn=2470-0029&rft_id=info:doi/10.1103/PhysRevD.103.105013&rft_dat=%3Cproquest_cross%3E2535883114%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2535883114&rft_id=info:pmid/&rfr_iscdi=true