Emergent geometry and path integral optimization for a Lifshitz action

Extending the background metric optimization procedure for Euclidean path integrals of two-dimensional conformal field theories, introduced by Caputa et al. [Phys. Rev. Lett. 119, 071602 (2017), J. High Energy Phys. 11 (2017) 097], to a z = 2 anisotropically scale-invariant ( 2 + 1 ) -dimensional Li...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review. D 2021-05, Vol.103 (10), p.1, Article 105013
Hauptverfasser: Ahmadain, A., Klich, I.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Extending the background metric optimization procedure for Euclidean path integrals of two-dimensional conformal field theories, introduced by Caputa et al. [Phys. Rev. Lett. 119, 071602 (2017), J. High Energy Phys. 11 (2017) 097], to a z = 2 anisotropically scale-invariant ( 2 + 1 ) -dimensional Lifshitz field theory of a free massless scalar field, we find optimal geometries for static and dynamic correlation functions. For the static correlation functions, the optimal background metric is equivalent to an AdS metric on a Poincaré patch, while for dynamical correlation functions, we find Lifshitz like metric. This results suggest that a MERA-like tensor network, perhaps without unitarity, would still be considered an optimal background spacetime configuration for the numerical description of this system, even though the classical action we start with is not a conformal field theory.
ISSN:2470-0010
2470-0029
DOI:10.1103/PhysRevD.103.105013