Cascaded high-gradient terahertz-driven acceleration of relativistic electron beams

Terahertz-driven acceleration has recently emerged as a route for delivering ultrashort bright electron beams efficiently, reliably and in a compact set-up. Many working schemes and key technologies related to terahertz-driven acceleration have been successfully demonstrated and are being developeds...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature photonics 2021-06, Vol.15 (6), p.426-430
Hauptverfasser: Xu, Hanxun, Yan, Lixin, Du, Yingchao, Huang, Wenhui, Tian, Qili, Li, Renkai, Liang, Yifan, Gu, Shaohong, Shi, Jiaru, Tang, Chuanxiang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 430
container_issue 6
container_start_page 426
container_title Nature photonics
container_volume 15
creator Xu, Hanxun
Yan, Lixin
Du, Yingchao
Huang, Wenhui
Tian, Qili
Li, Renkai
Liang, Yifan
Gu, Shaohong
Shi, Jiaru
Tang, Chuanxiang
description Terahertz-driven acceleration has recently emerged as a route for delivering ultrashort bright electron beams efficiently, reliably and in a compact set-up. Many working schemes and key technologies related to terahertz-driven acceleration have been successfully demonstrated and are being developeds 1 – 10 . However, the achieved acceleration gradient and energy gain remain low, and the potential physics and technical challenges in the high-energy regime are still underexplored. Here we report whole-bunch acceleration of relativistic beams with an effective acceleration gradient of up to 85 MV m –1 in a single-stage configuration and demonstrate a cascaded terahertz-driven acceleration scheme of relativistic beams with an energy gain of 204 keV. These proof-of-principle results represent a critical advance towards high-energy terahertz-driven acceleration of relativistic beams, are scalable and have great potential to provide high-quality beams, with implications for future terahertz-driven electron sources and related scientific discoveries. A relativistic electron beam with 1.9 pC charge is accelerated by copropagating with a terahertz pulse through two dielectric-loaded waveguides. The accelerating gradient in a single dielectric-loaded waveguide is 85 MV m −1 . The total energy gain is 204 keV.
doi_str_mv 10.1038/s41566-021-00779-x
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2535620908</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2535620908</sourcerecordid><originalsourceid>FETCH-LOGICAL-c385t-c27dfb8c5d53d3135087a8d8eed20b524dd6019a6f963b75b57d39cf93e2c1a03</originalsourceid><addsrcrecordid>eNp9kEtLAzEUhYMoWKt_wNWA62gek0mylOILBBfqOmSSO21KO1OTtFR_vdER3bm6h3vOuRc-hM4puaSEq6tUU9E0mDCKCZFS4_0BmlBZa1wrzQ9_tRLH6CSlJSGCa8Ym6Hlmk7MefLUI8wWeR-sD9LnKEO0CYv7APoYd9JV1DlZlmcPQV0NXRVgVvQspB1cVx-VYjBbsOp2io86uEpz9zCl6vb15md3jx6e7h9n1I3ZciYwdk75rlRNecM8pF0RJq7wC8Iy0gtXeN4Rq23S64a0UrZCea9dpDsxRS_gUXYx3N3F420LKZjlsY19eGia4aBjRRJUUG1MuDilF6MwmhrWN74YS8wXPjPBMgWe-4Zl9KfGxlEq4n0P8O_1P6xM-TXP5</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2535620908</pqid></control><display><type>article</type><title>Cascaded high-gradient terahertz-driven acceleration of relativistic electron beams</title><source>Springer Nature - Complete Springer Journals</source><source>Nature Journals Online</source><creator>Xu, Hanxun ; Yan, Lixin ; Du, Yingchao ; Huang, Wenhui ; Tian, Qili ; Li, Renkai ; Liang, Yifan ; Gu, Shaohong ; Shi, Jiaru ; Tang, Chuanxiang</creator><creatorcontrib>Xu, Hanxun ; Yan, Lixin ; Du, Yingchao ; Huang, Wenhui ; Tian, Qili ; Li, Renkai ; Liang, Yifan ; Gu, Shaohong ; Shi, Jiaru ; Tang, Chuanxiang</creatorcontrib><description>Terahertz-driven acceleration has recently emerged as a route for delivering ultrashort bright electron beams efficiently, reliably and in a compact set-up. Many working schemes and key technologies related to terahertz-driven acceleration have been successfully demonstrated and are being developeds 1 – 10 . However, the achieved acceleration gradient and energy gain remain low, and the potential physics and technical challenges in the high-energy regime are still underexplored. Here we report whole-bunch acceleration of relativistic beams with an effective acceleration gradient of up to 85 MV m –1 in a single-stage configuration and demonstrate a cascaded terahertz-driven acceleration scheme of relativistic beams with an energy gain of 204 keV. These proof-of-principle results represent a critical advance towards high-energy terahertz-driven acceleration of relativistic beams, are scalable and have great potential to provide high-quality beams, with implications for future terahertz-driven electron sources and related scientific discoveries. A relativistic electron beam with 1.9 pC charge is accelerated by copropagating with a terahertz pulse through two dielectric-loaded waveguides. The accelerating gradient in a single dielectric-loaded waveguide is 85 MV m −1 . The total energy gain is 204 keV.</description><identifier>ISSN: 1749-4885</identifier><identifier>EISSN: 1749-4893</identifier><identifier>DOI: 10.1038/s41566-021-00779-x</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/624/1075/1081 ; 639/624/400/561 ; 639/766/1130 ; Applied and Technical Physics ; Electron sources ; Energy ; Lasers ; Letter ; Photonics ; Physics ; Physics and Astronomy ; Quantum Physics ; Radiation ; Relativistic effects ; Relativistic electron beams ; Simulation ; Waveguides</subject><ispartof>Nature photonics, 2021-06, Vol.15 (6), p.426-430</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Limited part of Springer Nature 2021</rights><rights>The Author(s), under exclusive licence to Springer Nature Limited part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c385t-c27dfb8c5d53d3135087a8d8eed20b524dd6019a6f963b75b57d39cf93e2c1a03</citedby><cites>FETCH-LOGICAL-c385t-c27dfb8c5d53d3135087a8d8eed20b524dd6019a6f963b75b57d39cf93e2c1a03</cites><orcidid>0000-0001-7929-5267 ; 0000-0002-6572-4400 ; 0000-0002-3163-5506 ; 0000-0002-1748-3366</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41566-021-00779-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41566-021-00779-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Xu, Hanxun</creatorcontrib><creatorcontrib>Yan, Lixin</creatorcontrib><creatorcontrib>Du, Yingchao</creatorcontrib><creatorcontrib>Huang, Wenhui</creatorcontrib><creatorcontrib>Tian, Qili</creatorcontrib><creatorcontrib>Li, Renkai</creatorcontrib><creatorcontrib>Liang, Yifan</creatorcontrib><creatorcontrib>Gu, Shaohong</creatorcontrib><creatorcontrib>Shi, Jiaru</creatorcontrib><creatorcontrib>Tang, Chuanxiang</creatorcontrib><title>Cascaded high-gradient terahertz-driven acceleration of relativistic electron beams</title><title>Nature photonics</title><addtitle>Nat. Photonics</addtitle><description>Terahertz-driven acceleration has recently emerged as a route for delivering ultrashort bright electron beams efficiently, reliably and in a compact set-up. Many working schemes and key technologies related to terahertz-driven acceleration have been successfully demonstrated and are being developeds 1 – 10 . However, the achieved acceleration gradient and energy gain remain low, and the potential physics and technical challenges in the high-energy regime are still underexplored. Here we report whole-bunch acceleration of relativistic beams with an effective acceleration gradient of up to 85 MV m –1 in a single-stage configuration and demonstrate a cascaded terahertz-driven acceleration scheme of relativistic beams with an energy gain of 204 keV. These proof-of-principle results represent a critical advance towards high-energy terahertz-driven acceleration of relativistic beams, are scalable and have great potential to provide high-quality beams, with implications for future terahertz-driven electron sources and related scientific discoveries. A relativistic electron beam with 1.9 pC charge is accelerated by copropagating with a terahertz pulse through two dielectric-loaded waveguides. The accelerating gradient in a single dielectric-loaded waveguide is 85 MV m −1 . The total energy gain is 204 keV.</description><subject>639/624/1075/1081</subject><subject>639/624/400/561</subject><subject>639/766/1130</subject><subject>Applied and Technical Physics</subject><subject>Electron sources</subject><subject>Energy</subject><subject>Lasers</subject><subject>Letter</subject><subject>Photonics</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Quantum Physics</subject><subject>Radiation</subject><subject>Relativistic effects</subject><subject>Relativistic electron beams</subject><subject>Simulation</subject><subject>Waveguides</subject><issn>1749-4885</issn><issn>1749-4893</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9kEtLAzEUhYMoWKt_wNWA62gek0mylOILBBfqOmSSO21KO1OTtFR_vdER3bm6h3vOuRc-hM4puaSEq6tUU9E0mDCKCZFS4_0BmlBZa1wrzQ9_tRLH6CSlJSGCa8Ym6Hlmk7MefLUI8wWeR-sD9LnKEO0CYv7APoYd9JV1DlZlmcPQV0NXRVgVvQspB1cVx-VYjBbsOp2io86uEpz9zCl6vb15md3jx6e7h9n1I3ZciYwdk75rlRNecM8pF0RJq7wC8Iy0gtXeN4Rq23S64a0UrZCea9dpDsxRS_gUXYx3N3F420LKZjlsY19eGia4aBjRRJUUG1MuDilF6MwmhrWN74YS8wXPjPBMgWe-4Zl9KfGxlEq4n0P8O_1P6xM-TXP5</recordid><startdate>20210601</startdate><enddate>20210601</enddate><creator>Xu, Hanxun</creator><creator>Yan, Lixin</creator><creator>Du, Yingchao</creator><creator>Huang, Wenhui</creator><creator>Tian, Qili</creator><creator>Li, Renkai</creator><creator>Liang, Yifan</creator><creator>Gu, Shaohong</creator><creator>Shi, Jiaru</creator><creator>Tang, Chuanxiang</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>LK8</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><orcidid>https://orcid.org/0000-0001-7929-5267</orcidid><orcidid>https://orcid.org/0000-0002-6572-4400</orcidid><orcidid>https://orcid.org/0000-0002-3163-5506</orcidid><orcidid>https://orcid.org/0000-0002-1748-3366</orcidid></search><sort><creationdate>20210601</creationdate><title>Cascaded high-gradient terahertz-driven acceleration of relativistic electron beams</title><author>Xu, Hanxun ; Yan, Lixin ; Du, Yingchao ; Huang, Wenhui ; Tian, Qili ; Li, Renkai ; Liang, Yifan ; Gu, Shaohong ; Shi, Jiaru ; Tang, Chuanxiang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c385t-c27dfb8c5d53d3135087a8d8eed20b524dd6019a6f963b75b57d39cf93e2c1a03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>639/624/1075/1081</topic><topic>639/624/400/561</topic><topic>639/766/1130</topic><topic>Applied and Technical Physics</topic><topic>Electron sources</topic><topic>Energy</topic><topic>Lasers</topic><topic>Letter</topic><topic>Photonics</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Quantum Physics</topic><topic>Radiation</topic><topic>Relativistic effects</topic><topic>Relativistic electron beams</topic><topic>Simulation</topic><topic>Waveguides</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xu, Hanxun</creatorcontrib><creatorcontrib>Yan, Lixin</creatorcontrib><creatorcontrib>Du, Yingchao</creatorcontrib><creatorcontrib>Huang, Wenhui</creatorcontrib><creatorcontrib>Tian, Qili</creatorcontrib><creatorcontrib>Li, Renkai</creatorcontrib><creatorcontrib>Liang, Yifan</creatorcontrib><creatorcontrib>Gu, Shaohong</creatorcontrib><creatorcontrib>Shi, Jiaru</creatorcontrib><creatorcontrib>Tang, Chuanxiang</creatorcontrib><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Biological Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Nature photonics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xu, Hanxun</au><au>Yan, Lixin</au><au>Du, Yingchao</au><au>Huang, Wenhui</au><au>Tian, Qili</au><au>Li, Renkai</au><au>Liang, Yifan</au><au>Gu, Shaohong</au><au>Shi, Jiaru</au><au>Tang, Chuanxiang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cascaded high-gradient terahertz-driven acceleration of relativistic electron beams</atitle><jtitle>Nature photonics</jtitle><stitle>Nat. Photonics</stitle><date>2021-06-01</date><risdate>2021</risdate><volume>15</volume><issue>6</issue><spage>426</spage><epage>430</epage><pages>426-430</pages><issn>1749-4885</issn><eissn>1749-4893</eissn><abstract>Terahertz-driven acceleration has recently emerged as a route for delivering ultrashort bright electron beams efficiently, reliably and in a compact set-up. Many working schemes and key technologies related to terahertz-driven acceleration have been successfully demonstrated and are being developeds 1 – 10 . However, the achieved acceleration gradient and energy gain remain low, and the potential physics and technical challenges in the high-energy regime are still underexplored. Here we report whole-bunch acceleration of relativistic beams with an effective acceleration gradient of up to 85 MV m –1 in a single-stage configuration and demonstrate a cascaded terahertz-driven acceleration scheme of relativistic beams with an energy gain of 204 keV. These proof-of-principle results represent a critical advance towards high-energy terahertz-driven acceleration of relativistic beams, are scalable and have great potential to provide high-quality beams, with implications for future terahertz-driven electron sources and related scientific discoveries. A relativistic electron beam with 1.9 pC charge is accelerated by copropagating with a terahertz pulse through two dielectric-loaded waveguides. The accelerating gradient in a single dielectric-loaded waveguide is 85 MV m −1 . The total energy gain is 204 keV.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><doi>10.1038/s41566-021-00779-x</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0001-7929-5267</orcidid><orcidid>https://orcid.org/0000-0002-6572-4400</orcidid><orcidid>https://orcid.org/0000-0002-3163-5506</orcidid><orcidid>https://orcid.org/0000-0002-1748-3366</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1749-4885
ispartof Nature photonics, 2021-06, Vol.15 (6), p.426-430
issn 1749-4885
1749-4893
language eng
recordid cdi_proquest_journals_2535620908
source Springer Nature - Complete Springer Journals; Nature Journals Online
subjects 639/624/1075/1081
639/624/400/561
639/766/1130
Applied and Technical Physics
Electron sources
Energy
Lasers
Letter
Photonics
Physics
Physics and Astronomy
Quantum Physics
Radiation
Relativistic effects
Relativistic electron beams
Simulation
Waveguides
title Cascaded high-gradient terahertz-driven acceleration of relativistic electron beams
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T20%3A58%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cascaded%20high-gradient%20terahertz-driven%20acceleration%20of%20relativistic%20electron%20beams&rft.jtitle=Nature%20photonics&rft.au=Xu,%20Hanxun&rft.date=2021-06-01&rft.volume=15&rft.issue=6&rft.spage=426&rft.epage=430&rft.pages=426-430&rft.issn=1749-4885&rft.eissn=1749-4893&rft_id=info:doi/10.1038/s41566-021-00779-x&rft_dat=%3Cproquest_cross%3E2535620908%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2535620908&rft_id=info:pmid/&rfr_iscdi=true