Cascaded high-gradient terahertz-driven acceleration of relativistic electron beams
Terahertz-driven acceleration has recently emerged as a route for delivering ultrashort bright electron beams efficiently, reliably and in a compact set-up. Many working schemes and key technologies related to terahertz-driven acceleration have been successfully demonstrated and are being developeds...
Gespeichert in:
Veröffentlicht in: | Nature photonics 2021-06, Vol.15 (6), p.426-430 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Terahertz-driven acceleration has recently emerged as a route for delivering ultrashort bright electron beams efficiently, reliably and in a compact set-up. Many working schemes and key technologies related to terahertz-driven acceleration have been successfully demonstrated and are being developeds
1
–
10
. However, the achieved acceleration gradient and energy gain remain low, and the potential physics and technical challenges in the high-energy regime are still underexplored. Here we report whole-bunch acceleration of relativistic beams with an effective acceleration gradient of up to 85 MV m
–1
in a single-stage configuration and demonstrate a cascaded terahertz-driven acceleration scheme of relativistic beams with an energy gain of 204 keV. These proof-of-principle results represent a critical advance towards high-energy terahertz-driven acceleration of relativistic beams, are scalable and have great potential to provide high-quality beams, with implications for future terahertz-driven electron sources and related scientific discoveries.
A relativistic electron beam with 1.9 pC charge is accelerated by copropagating with a terahertz pulse through two dielectric-loaded waveguides. The accelerating gradient in a single dielectric-loaded waveguide is 85 MV m
−1
. The total energy gain is 204 keV. |
---|---|
ISSN: | 1749-4885 1749-4893 |
DOI: | 10.1038/s41566-021-00779-x |