Type and Conductor of Simplicial Affine Semigroups
We provide a generalization of pseudo-Frobenius numbers of numerical semigroups to the context of the simplicial affine semigroups. In this way, we characterize the Cohen-Macaulay type of the simplicial affine semigroup ring \(\mathbb{K}[S]\). We define the type of \(S\), \(\operatorname{type}\), in...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2021-05 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We provide a generalization of pseudo-Frobenius numbers of numerical semigroups to the context of the simplicial affine semigroups. In this way, we characterize the Cohen-Macaulay type of the simplicial affine semigroup ring \(\mathbb{K}[S]\). We define the type of \(S\), \(\operatorname{type}\), in terms of some Apéry sets of \(S\) and show that it coincides with the Cohen-Macaulay type of the semigroup ring, when \(\mathbb{K}[S]\) is Cohen-Macaulay. If \(\mathbb{K}[S]\) is a \(d\)-dimensional Cohen-Macaulay ring of embedding dimension at most \(d+2\), then \(\operatorname{type}\leq 2\). Otherwise, \(\operatorname{type}\) might be arbitrary large and it has no upper bound in terms of the embedding dimension. Finally, we present a generating set for the conductor of \(S\) as an ideal of its normalization. |
---|---|
ISSN: | 2331-8422 |