Prediction and analysis of compressive strength of recycled aggregate thermal insulation concrete based on GA-BP optimization network

PurposeThis paper aims to predict the 28-day compressive strength of recycled thermal insulation concrete more accurately.Design/methodology/approachThe initial weights and thresholds of BP neural network are improved by genetic algorithm on MATLAB 2014 a platform.FindingsGenetic algorithm–back prop...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of Engineering, Design and Technology Design and Technology, 2021-04, Vol.19 (2), p.412-422
Hauptverfasser: Tu, Jinsong, Liu, Yuanzhen, Zhou, Ming, Li, Ruixia
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:PurposeThis paper aims to predict the 28-day compressive strength of recycled thermal insulation concrete more accurately.Design/methodology/approachThe initial weights and thresholds of BP neural network are improved by genetic algorithm on MATLAB 2014 a platform.FindingsGenetic algorithm–back propagation (GA-BP) neural network is more stable. The generalization performance of the complex is better.Originality/valueThe GA-BP neural network based on the training sample data can better realize the strength prediction of recycled aggregate thermal insulation concrete and reduce the complex orthogonal experimental process. GA-BP neural network is more stable. The generalization performance of the complex is better.
ISSN:1726-0531
1758-8901
DOI:10.1108/JEDT-01-2020-0022