Kernel and CDF-Based Estimation of Extropy and Entropy from Progressively Type-II Censoring with Application for Goodness of Fit Problems

Recently, entropy and extropy-based tests for the uniform distribution have attracted the attention of some researchers. This paper proposes nonparametric entropy and extropy estimators based on progressive type-II censoring and investigates their properties and behavior. Performance of the proposed...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Economic quality control 2021-01, Vol.36 (1), p.73-83
Hauptverfasser: Hazeb, Rajaa, Bayoud, Husam A., Raqab, Mohammad Z.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Recently, entropy and extropy-based tests for the uniform distribution have attracted the attention of some researchers. This paper proposes nonparametric entropy and extropy estimators based on progressive type-II censoring and investigates their properties and behavior. Performance of the proposed estimators is studied via simulations. Entropy and extropy-based goodness-of-fit tests for uniformity are developed by the well performed estimators. The powers of the proposed uniformity tests are compared also via simulations assuming various alternatives and censoring schemes.
ISSN:0940-5151
2367-2390
1869-6147
2367-2404
DOI:10.1515/eqc-2020-0035