Image-based visual servoing using a set for multiple pin-in-hole assembly
Purpose This paper aims to present an image-based visual servoing algorithm for a multiple pin-in-hole assembly. This paper also aims to avoid the matching and tracking of image features and the remaining robust against image defects. Design/methodology/approach The authors derive a novel model in t...
Gespeichert in:
Veröffentlicht in: | Assembly automation 2020-12, Vol.40 (6), p.819-831 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Purpose
This paper aims to present an image-based visual servoing algorithm for a multiple pin-in-hole assembly. This paper also aims to avoid the matching and tracking of image features and the remaining robust against image defects.
Design/methodology/approach
The authors derive a novel model in the set space and design three image errors to control the 3 degrees of freedom (DOF) of a single-lug workpiece in the alignment task. Analytic computations of the interaction matrix that link the time variations of the image errors to the single-lug workpiece motions are performed. The authors introduce two approximate hypotheses so that the interaction matrix has a decoupled form, and an auto-adaptive algorithm is designed to estimate the interaction matrix.
Findings
Image-based visual servoing in the set space avoids the matching and tracking of image features, and these methods are not sensitive to image effects. The control law using the auto-adaptive algorithm is more efficient than that using a static interaction matrix. Simulations and real-world experiments are performed to demonstrate the effectiveness of the proposed algorithm.
Originality/value
This paper proposes a new visual servoing method to achieve pin-in-hole assembly tasks. The main advantage of this new approach is that it does not require tracking or matching of the image features, and its supplementary advantage is that it is not sensitive to image defects. |
---|---|
ISSN: | 0144-5154 2754-6969 1758-4078 2754-6977 |
DOI: | 10.1108/AA-08-2018-110 |