A transient ionizing radiation SPICE model for PDSOI MOSFET

In this paper, a transient ionizing radiation SPICE model for PDSOI MOSFET is proposed for the simulation of the rail‐span collapse. It is based on the present understanding of transient ionizing radiation effects. The model accounts for the generation and collection of radiation induced transient p...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Microwave and optical technology letters 2021-08, Vol.63 (8), p.2103-2107
Hauptverfasser: Gao, Libo, Du, Chuanhua, Bu, Jianhui, Li, Jiangjiang, Ma, Quangang, Zhao, Fazhan, Zeng, Chao, Gao, Jiantou, Li, Duoli, Zeng, Chuanbin, Han, Zhengsheng, Luo, Jiajun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2107
container_issue 8
container_start_page 2103
container_title Microwave and optical technology letters
container_volume 63
creator Gao, Libo
Du, Chuanhua
Bu, Jianhui
Li, Jiangjiang
Ma, Quangang
Zhao, Fazhan
Zeng, Chao
Gao, Jiantou
Li, Duoli
Zeng, Chuanbin
Han, Zhengsheng
Luo, Jiajun
description In this paper, a transient ionizing radiation SPICE model for PDSOI MOSFET is proposed for the simulation of the rail‐span collapse. It is based on the present understanding of transient ionizing radiation effects. The model accounts for the generation and collection of radiation induced transient photocurrent, the influence of the device geometry, and the bias conditions. Verilog‐A behavioral modeling language is utilized to implement the physically based models of the transient current sources, eliminating the use of independent current sources and lumped SPICE element models. The model is validated by comparison with the Sentaurus TCAD simulation results. The comparison of simulation and experimental results of the 64K SRAM fabricated by the 0.13 μm PDSOI technology validates the effectiveness of the dose rate model.
doi_str_mv 10.1002/mop.32317
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2534559131</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2534559131</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2977-5bf76c5f33b819abcfc719dc9052520fae528b522b4e19986906e5a4a54862de3</originalsourceid><addsrcrecordid>eNp1kEFLwzAUx4MoOKcHv0HAk4duyUvTNHgac-pgo4PpOaRtIhlbU5MOmZ_ear16erzH7_3_8EPolpIJJQSmB99OGDAqztCIEpknIDJyjkYklzyBVIhLdBXjjhDChIARepjhLugmOtN02PnGfbnmHQddO931K95ulvMFPvja7LH1AW8et8USr4vt0-L1Gl1YvY_m5m-O0Vt_nb8kq-J5OZ-tkgqkEAkvrcgqbhkrcyp1WdlKUFlXknDgQKw2HPKSA5SpoVLmmSSZ4TrVPM0zqA0bo7shtw3-42hip3b-GJq-UgFnKeeSMtpT9wNVBR9jMFa1wR10OClK1I8b1btRv256djqwn25vTv-Dal1sho9vPtFipw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2534559131</pqid></control><display><type>article</type><title>A transient ionizing radiation SPICE model for PDSOI MOSFET</title><source>Wiley Journals</source><creator>Gao, Libo ; Du, Chuanhua ; Bu, Jianhui ; Li, Jiangjiang ; Ma, Quangang ; Zhao, Fazhan ; Zeng, Chao ; Gao, Jiantou ; Li, Duoli ; Zeng, Chuanbin ; Han, Zhengsheng ; Luo, Jiajun</creator><creatorcontrib>Gao, Libo ; Du, Chuanhua ; Bu, Jianhui ; Li, Jiangjiang ; Ma, Quangang ; Zhao, Fazhan ; Zeng, Chao ; Gao, Jiantou ; Li, Duoli ; Zeng, Chuanbin ; Han, Zhengsheng ; Luo, Jiajun</creatorcontrib><description>In this paper, a transient ionizing radiation SPICE model for PDSOI MOSFET is proposed for the simulation of the rail‐span collapse. It is based on the present understanding of transient ionizing radiation effects. The model accounts for the generation and collection of radiation induced transient photocurrent, the influence of the device geometry, and the bias conditions. Verilog‐A behavioral modeling language is utilized to implement the physically based models of the transient current sources, eliminating the use of independent current sources and lumped SPICE element models. The model is validated by comparison with the Sentaurus TCAD simulation results. The comparison of simulation and experimental results of the 64K SRAM fabricated by the 0.13 μm PDSOI technology validates the effectiveness of the dose rate model.</description><identifier>ISSN: 0895-2477</identifier><identifier>EISSN: 1098-2760</identifier><identifier>DOI: 10.1002/mop.32317</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley &amp; Sons, Inc</publisher><subject>Current sources ; Dosage ; Ionizing radiation ; MOSFETs ; PDSOI ; photocurrent ; Photoelectric effect ; Photoelectric emission ; Radiation ; Radiation effects ; Simulation ; SPICE model ; Transient current ; transient ionizing radiation</subject><ispartof>Microwave and optical technology letters, 2021-08, Vol.63 (8), p.2103-2107</ispartof><rights>2020 Wiley Periodicals, Inc.</rights><rights>2021 Wiley Periodicals LLC.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2977-5bf76c5f33b819abcfc719dc9052520fae528b522b4e19986906e5a4a54862de3</citedby><cites>FETCH-LOGICAL-c2977-5bf76c5f33b819abcfc719dc9052520fae528b522b4e19986906e5a4a54862de3</cites><orcidid>0000-0002-5059-624X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fmop.32317$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fmop.32317$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Gao, Libo</creatorcontrib><creatorcontrib>Du, Chuanhua</creatorcontrib><creatorcontrib>Bu, Jianhui</creatorcontrib><creatorcontrib>Li, Jiangjiang</creatorcontrib><creatorcontrib>Ma, Quangang</creatorcontrib><creatorcontrib>Zhao, Fazhan</creatorcontrib><creatorcontrib>Zeng, Chao</creatorcontrib><creatorcontrib>Gao, Jiantou</creatorcontrib><creatorcontrib>Li, Duoli</creatorcontrib><creatorcontrib>Zeng, Chuanbin</creatorcontrib><creatorcontrib>Han, Zhengsheng</creatorcontrib><creatorcontrib>Luo, Jiajun</creatorcontrib><title>A transient ionizing radiation SPICE model for PDSOI MOSFET</title><title>Microwave and optical technology letters</title><description>In this paper, a transient ionizing radiation SPICE model for PDSOI MOSFET is proposed for the simulation of the rail‐span collapse. It is based on the present understanding of transient ionizing radiation effects. The model accounts for the generation and collection of radiation induced transient photocurrent, the influence of the device geometry, and the bias conditions. Verilog‐A behavioral modeling language is utilized to implement the physically based models of the transient current sources, eliminating the use of independent current sources and lumped SPICE element models. The model is validated by comparison with the Sentaurus TCAD simulation results. The comparison of simulation and experimental results of the 64K SRAM fabricated by the 0.13 μm PDSOI technology validates the effectiveness of the dose rate model.</description><subject>Current sources</subject><subject>Dosage</subject><subject>Ionizing radiation</subject><subject>MOSFETs</subject><subject>PDSOI</subject><subject>photocurrent</subject><subject>Photoelectric effect</subject><subject>Photoelectric emission</subject><subject>Radiation</subject><subject>Radiation effects</subject><subject>Simulation</subject><subject>SPICE model</subject><subject>Transient current</subject><subject>transient ionizing radiation</subject><issn>0895-2477</issn><issn>1098-2760</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp1kEFLwzAUx4MoOKcHv0HAk4duyUvTNHgac-pgo4PpOaRtIhlbU5MOmZ_ear16erzH7_3_8EPolpIJJQSmB99OGDAqztCIEpknIDJyjkYklzyBVIhLdBXjjhDChIARepjhLugmOtN02PnGfbnmHQddO931K95ulvMFPvja7LH1AW8et8USr4vt0-L1Gl1YvY_m5m-O0Vt_nb8kq-J5OZ-tkgqkEAkvrcgqbhkrcyp1WdlKUFlXknDgQKw2HPKSA5SpoVLmmSSZ4TrVPM0zqA0bo7shtw3-42hip3b-GJq-UgFnKeeSMtpT9wNVBR9jMFa1wR10OClK1I8b1btRv256djqwn25vTv-Dal1sho9vPtFipw</recordid><startdate>202108</startdate><enddate>202108</enddate><creator>Gao, Libo</creator><creator>Du, Chuanhua</creator><creator>Bu, Jianhui</creator><creator>Li, Jiangjiang</creator><creator>Ma, Quangang</creator><creator>Zhao, Fazhan</creator><creator>Zeng, Chao</creator><creator>Gao, Jiantou</creator><creator>Li, Duoli</creator><creator>Zeng, Chuanbin</creator><creator>Han, Zhengsheng</creator><creator>Luo, Jiajun</creator><general>John Wiley &amp; Sons, Inc</general><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-5059-624X</orcidid></search><sort><creationdate>202108</creationdate><title>A transient ionizing radiation SPICE model for PDSOI MOSFET</title><author>Gao, Libo ; Du, Chuanhua ; Bu, Jianhui ; Li, Jiangjiang ; Ma, Quangang ; Zhao, Fazhan ; Zeng, Chao ; Gao, Jiantou ; Li, Duoli ; Zeng, Chuanbin ; Han, Zhengsheng ; Luo, Jiajun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2977-5bf76c5f33b819abcfc719dc9052520fae528b522b4e19986906e5a4a54862de3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Current sources</topic><topic>Dosage</topic><topic>Ionizing radiation</topic><topic>MOSFETs</topic><topic>PDSOI</topic><topic>photocurrent</topic><topic>Photoelectric effect</topic><topic>Photoelectric emission</topic><topic>Radiation</topic><topic>Radiation effects</topic><topic>Simulation</topic><topic>SPICE model</topic><topic>Transient current</topic><topic>transient ionizing radiation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gao, Libo</creatorcontrib><creatorcontrib>Du, Chuanhua</creatorcontrib><creatorcontrib>Bu, Jianhui</creatorcontrib><creatorcontrib>Li, Jiangjiang</creatorcontrib><creatorcontrib>Ma, Quangang</creatorcontrib><creatorcontrib>Zhao, Fazhan</creatorcontrib><creatorcontrib>Zeng, Chao</creatorcontrib><creatorcontrib>Gao, Jiantou</creatorcontrib><creatorcontrib>Li, Duoli</creatorcontrib><creatorcontrib>Zeng, Chuanbin</creatorcontrib><creatorcontrib>Han, Zhengsheng</creatorcontrib><creatorcontrib>Luo, Jiajun</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Microwave and optical technology letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gao, Libo</au><au>Du, Chuanhua</au><au>Bu, Jianhui</au><au>Li, Jiangjiang</au><au>Ma, Quangang</au><au>Zhao, Fazhan</au><au>Zeng, Chao</au><au>Gao, Jiantou</au><au>Li, Duoli</au><au>Zeng, Chuanbin</au><au>Han, Zhengsheng</au><au>Luo, Jiajun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A transient ionizing radiation SPICE model for PDSOI MOSFET</atitle><jtitle>Microwave and optical technology letters</jtitle><date>2021-08</date><risdate>2021</risdate><volume>63</volume><issue>8</issue><spage>2103</spage><epage>2107</epage><pages>2103-2107</pages><issn>0895-2477</issn><eissn>1098-2760</eissn><abstract>In this paper, a transient ionizing radiation SPICE model for PDSOI MOSFET is proposed for the simulation of the rail‐span collapse. It is based on the present understanding of transient ionizing radiation effects. The model accounts for the generation and collection of radiation induced transient photocurrent, the influence of the device geometry, and the bias conditions. Verilog‐A behavioral modeling language is utilized to implement the physically based models of the transient current sources, eliminating the use of independent current sources and lumped SPICE element models. The model is validated by comparison with the Sentaurus TCAD simulation results. The comparison of simulation and experimental results of the 64K SRAM fabricated by the 0.13 μm PDSOI technology validates the effectiveness of the dose rate model.</abstract><cop>Hoboken, USA</cop><pub>John Wiley &amp; Sons, Inc</pub><doi>10.1002/mop.32317</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0002-5059-624X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0895-2477
ispartof Microwave and optical technology letters, 2021-08, Vol.63 (8), p.2103-2107
issn 0895-2477
1098-2760
language eng
recordid cdi_proquest_journals_2534559131
source Wiley Journals
subjects Current sources
Dosage
Ionizing radiation
MOSFETs
PDSOI
photocurrent
Photoelectric effect
Photoelectric emission
Radiation
Radiation effects
Simulation
SPICE model
Transient current
transient ionizing radiation
title A transient ionizing radiation SPICE model for PDSOI MOSFET
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T13%3A19%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20transient%20ionizing%20radiation%20SPICE%20model%20for%20PDSOI%20MOSFET&rft.jtitle=Microwave%20and%20optical%20technology%20letters&rft.au=Gao,%20Libo&rft.date=2021-08&rft.volume=63&rft.issue=8&rft.spage=2103&rft.epage=2107&rft.pages=2103-2107&rft.issn=0895-2477&rft.eissn=1098-2760&rft_id=info:doi/10.1002/mop.32317&rft_dat=%3Cproquest_cross%3E2534559131%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2534559131&rft_id=info:pmid/&rfr_iscdi=true