Friction factor calculation for turbulent flow in annulus with temperature effects
Purpose The purpose of this paper is to present a new friction factor equation for practical use, including fluid temperature, pipe diameter ratio and inner pipe rotation effects. Design/methodology/approach A friction factor relationship is developed by applying Buckingham’s Theorem of dimensional...
Gespeichert in:
Veröffentlicht in: | International journal of numerical methods for heat & fluid flow 2020-06, Vol.30 (7), p.3755-3763 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Purpose
The purpose of this paper is to present a new friction factor equation for practical use, including fluid temperature, pipe diameter ratio and inner pipe rotation effects.
Design/methodology/approach
A friction factor relationship is developed by applying Buckingham’s Theorem of dimensional analysis. Then, the formula is calibrated using experimental data conducted at Izmir Katip Celebi University flow loop. Moreover, the effects of fluid temperature, inner pipe rotation and pipe diameter ratio on friction factor are investigated experimentally.
Findings
Satisfactory agreements are obtained between proposed formula and experiments. The experimental results indicate that major variable parameters affecting friction factor is Reynolds number. Pipe rotation has negligible effect on friction factor at high Reynolds number. Prandtl number is one of the important parameters affecting the friction factor. Moreover, as the pipe diameter ratio is decreased, friction factor increases.
Originality/value
Determining fluid behavior of fluids under high temperature is especially important for deep wells during drilling. Temperature drastically changes fluid properties and flow characteristics in wells. These changes have a remarkable effect on pressure losses. However, since the temperature is considered constant in the calculation of the pressure loss, problems can be encountered in most systems. Friction factor is one of the important parameters for determining pressure loss in closed conduits. The originality of this work is to propose a new friction factor equation for practical use, including fluid temperature, pipe diameter ratio and inner pipe rotation effects. |
---|---|
ISSN: | 0961-5539 1758-6585 |
DOI: | 10.1108/HFF-07-2019-0578 |