Cavitation performance prediction of mixed-flow pump based on CFD

The computational fluid dynamics (CFD) method is used to investigate the three-dimensional cavitation flow fields in a mixed-flow pump with high specific speed. In the numerical modeling, the homogeneous mixture model and Navier-Stokes equation with RNG k−ϵ turbulence model are employed. At the best...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IOP conference series. Earth and environmental science 2012-11, Vol.15 (3), p.32057, Article 032057
Hauptverfasser: Yang, F, Liu, C, Tang, F P
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The computational fluid dynamics (CFD) method is used to investigate the three-dimensional cavitation flow fields in a mixed-flow pump with high specific speed. In the numerical modeling, the homogeneous mixture model and Navier-Stokes equation with RNG k−ϵ turbulence model are employed. At the best efficiency condition, the cavitation location on the impeller blades and the distribution situation of vapor volume fraction were analyzed, as well as the performance curve between the pump's NPSHA and efficiency were predicted. The results show that, the cavitation directly affects the pressure distribution on impeller blade surfaces, and also results in change of the pump external characteristic. Under the primary cavitation condition, Water vapors first accumulate on the suction surface of blade's leading edge, which is close to the tip. With the decrease of inlet total pressure, the cavitation region extended towards the trailing edge and water vapor fraction volume become larger gradually. When cavitation is serious, water vapors mainly accumulate on the suction surface of blade's trailing edge. The prediction curve has the same trend as the practical curve, which can reveal the mixed-flow pump cavitation within the static characteristics.
ISSN:1755-1315
1755-1307
1755-1315
DOI:10.1088/1755-1315/15/3/032057