A non-Archimedean analogue of Teichmüller space and its tropicalization

In this article we use techniques from tropical and logarithmic geometry to construct a non-Archimedean analogue of Teichmüller space T ¯ g whose points are pairs consisting of a stable projective curve over a non-Archimedean field and a Teichmüller marking of the topological fundamental group of it...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Selecta mathematica (Basel, Switzerland) Switzerland), 2021-07, Vol.27 (3), Article 39
1. Verfasser: Ulirsch, Martin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this article we use techniques from tropical and logarithmic geometry to construct a non-Archimedean analogue of Teichmüller space T ¯ g whose points are pairs consisting of a stable projective curve over a non-Archimedean field and a Teichmüller marking of the topological fundamental group of its Berkovich analytification. This construction is closely related to and inspired by the classical construction of a non-Archimedean Schottky space for Mumford curves by Gerritzen and Herrlich. We argue that the skeleton of non-Archimedean Teichmüller space is precisely the tropical Teichmüller space introduced by Chan–Melo–Viviani as a simplicial completion of Culler–Vogtmann Outer space. As a consequence, Outer space turns out to be a strong deformation retract of the locus of smooth Mumford curves in T ¯ g .
ISSN:1022-1824
1420-9020
DOI:10.1007/s00029-021-00651-4