A non-Archimedean analogue of Teichmüller space and its tropicalization
In this article we use techniques from tropical and logarithmic geometry to construct a non-Archimedean analogue of Teichmüller space T ¯ g whose points are pairs consisting of a stable projective curve over a non-Archimedean field and a Teichmüller marking of the topological fundamental group of it...
Gespeichert in:
Veröffentlicht in: | Selecta mathematica (Basel, Switzerland) Switzerland), 2021-07, Vol.27 (3), Article 39 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this article we use techniques from tropical and logarithmic geometry to construct a non-Archimedean analogue of
Teichmüller space
T
¯
g
whose points are pairs consisting of a stable projective curve over a non-Archimedean field and a Teichmüller marking of the topological fundamental group of its Berkovich analytification. This construction is closely related to and inspired by the classical construction of a non-Archimedean Schottky space for Mumford curves by Gerritzen and Herrlich. We argue that the skeleton of non-Archimedean Teichmüller space is precisely the tropical Teichmüller space introduced by Chan–Melo–Viviani as a simplicial completion of Culler–Vogtmann Outer space. As a consequence, Outer space turns out to be a strong deformation retract of the locus of smooth Mumford curves in
T
¯
g
. |
---|---|
ISSN: | 1022-1824 1420-9020 |
DOI: | 10.1007/s00029-021-00651-4 |