Fe-doped CoS2 nanoparticles supported CoS2 microspheres@N-doped carbon electrocatalyst for enhanced oxygen evolution reaction

Non-noble electrocatalysts (such as transition metal sulfides) have been attractive to substitute noble-metal catalysts for oxygen evolution reaction (OER) to advance the practical application of clean energy. Herein, a Fe-doped CoS 2 nanoparticles supported CoS 2 microspheres@N-doped carbon (Fe-CoS...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied physics. A, Materials science & processing Materials science & processing, 2021-06, Vol.127 (6), Article 465
Hauptverfasser: Yang, Chen, Chang, Yu-Xin, Kang, Huiying, Li, Yaru, Yan, Mengmeng, Xu, Sailong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Non-noble electrocatalysts (such as transition metal sulfides) have been attractive to substitute noble-metal catalysts for oxygen evolution reaction (OER) to advance the practical application of clean energy. Herein, a Fe-doped CoS 2 nanoparticles supported CoS 2 microspheres@N-doped carbon (Fe-CoS 2 /CoS 2 @NC) is prepared as an efficient OER electrocatalyst. The Fe-CoS 2 /CoS 2 @NC composite is derived by sulfurizing the metanilic-intercalated Co(OH) 2 microspheres decorated with binary active CoFe-Prussian blue analogue (CoFe-PBA) nanoparticles. The obtained composite combines the advantageous characteristics for enhancing electrocatalytic performances: binary active Fe-CoS 2 derived from CoFe-PBA, active CoS 2 , N-doped carbon scaffold to improve electronic conductivity, the appropriate specific surface area and meso/macroporous size distribution to afford rich active sites. The Fe-CoS 2 /CoS 2 @NC requires an overpotential of 300 mV to reach a current density of 10 mA cm −2 with a Tafel slope of 72 mV dec −1 in 1.0 M KOH, outperforming those of NC/CoS 2 , NC/Fe-CoS 2 and CoS 2 . Furthermore, the enhancement is experimentally supported by the low charge-transfer resistance and the large electrochemical active surface area during the OER. The synthesis approach could be extended to provide a tunable hydroxide/PBAs precursor-based approach for designing and preparing hierarchical structures as electrocatalysts.
ISSN:0947-8396
1432-0630
DOI:10.1007/s00339-021-04614-6