Supercritical CO2 Mixtures for Advanced Brayton Power Cycles in Line-Focusing Solar Power Plants

This work quantifies the impact of using sCO2-mixtures (s-CO2/He, s-CO2/Kr, s-CO2/H2S, s-CO2/CH4, s-CO2/C2H6, s-CO2/C3H8, s-CO2/C4H8, s-CO2/C4H10, s-CO2/C5H10, s-CO2/C5H12 and s-CO2/C6H6) as the working fluid in the supercritical CO2 recompression Brayton cycle coupled with line-focusing solar power...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied sciences 2020-01, Vol.10 (1), p.55
Hauptverfasser: Valencia-Chapi, Robert, Coco-Enríquez, Luis, Muñoz-Antón, Javier
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page 55
container_title Applied sciences
container_volume 10
creator Valencia-Chapi, Robert
Coco-Enríquez, Luis
Muñoz-Antón, Javier
description This work quantifies the impact of using sCO2-mixtures (s-CO2/He, s-CO2/Kr, s-CO2/H2S, s-CO2/CH4, s-CO2/C2H6, s-CO2/C3H8, s-CO2/C4H8, s-CO2/C4H10, s-CO2/C5H10, s-CO2/C5H12 and s-CO2/C6H6) as the working fluid in the supercritical CO2 recompression Brayton cycle coupled with line-focusing solar power plants (with parabolic trough collectors (PTC) or linear Fresnel (LF)). Design parameters assessed are the solar plant performance at the design point, heat exchange dimensions, solar field aperture area, and cost variations in relation with admixtures mole fraction. The adopted methodology for the plant performance calculation is setting a constant heat recuperator total conductance (UAtotal). The main conclusion of this work is that the power cycle thermodynamic efficiency improves by about 3–4%, on a scale comparable to increasing the turbine inlet temperature when the cycle utilizes the mentioned sCO2-mixtures as the working fluid. On one hand, the substances He, Kr, CH4, and C2H6 reduce the critical temperature to approximately 273.15 K; in this scenario, the thermal efficiency is improved from 49% to 53% with pure s-CO2. This solution is very suitable for concentrated solar power plants coupled to s-CO2 Brayton power cycles (CSP-sCO2) with night sky cooling. On the other hand, when adopting an air-cooled heat exchanger (dry-cooling) as the ultimate heat sink, the critical temperatures studied at compressor inlet are from 318.15 K to 333.15 K, for this scenario other substances (C3H8, C4H8, C4H10, C5H10, C5H12 and C6H6) were analyzed. Thermodynamic results confirmed that the Brayton cycle efficiency also increased by about 3–4%. Since the ambient temperature variation plays an important role in solar power plants with dry-cooling systems, a CIT sensitivity analysis was also conducted, which constitutes the first approach to defining the optimum working fluid mixture for a given operating condition.
doi_str_mv 10.3390/app10010055
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2533858668</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2533858668</sourcerecordid><originalsourceid>FETCH-LOGICAL-c298t-622cc1d3975d0a6dce3b8c923fc08a7048ff0160d9fb83d54868c75dd99e60dd3</originalsourceid><addsrcrecordid>eNpNkEtLAzEUhYMoWGpX_oGASxnNo5NJlnWwVai0UF2PaR6SMiZjMqP23xtpFz1cOIfLx71wALjG6I5Sge5l12GE8pTlGRgRVLGCTnF1fpIvwSSlHcoSmHKMRuB9M3Qmquh6p2QL6xWBL-63H6JJ0IYIZ_pbemU0fIhy3wcP1-HHRFjvVZsJ5-HSeVPMgxqS8x9wE1oZj8y6lb5PV-DCyjaZydHH4G3--Fo_FcvV4rmeLQtFBO8LRohSWFNRlRpJppWhW64EoVYhLis05dYizJAWdsupLqeccZVZLYTJW03H4OZwt4vhazCpb3ZhiD6_bEhJKS85YzxTtwdKxZBSNLbpovuUcd9g1Py32Jy0SP8AGGlkcQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2533858668</pqid></control><display><type>article</type><title>Supercritical CO2 Mixtures for Advanced Brayton Power Cycles in Line-Focusing Solar Power Plants</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Valencia-Chapi, Robert ; Coco-Enríquez, Luis ; Muñoz-Antón, Javier</creator><creatorcontrib>Valencia-Chapi, Robert ; Coco-Enríquez, Luis ; Muñoz-Antón, Javier</creatorcontrib><description>This work quantifies the impact of using sCO2-mixtures (s-CO2/He, s-CO2/Kr, s-CO2/H2S, s-CO2/CH4, s-CO2/C2H6, s-CO2/C3H8, s-CO2/C4H8, s-CO2/C4H10, s-CO2/C5H10, s-CO2/C5H12 and s-CO2/C6H6) as the working fluid in the supercritical CO2 recompression Brayton cycle coupled with line-focusing solar power plants (with parabolic trough collectors (PTC) or linear Fresnel (LF)). Design parameters assessed are the solar plant performance at the design point, heat exchange dimensions, solar field aperture area, and cost variations in relation with admixtures mole fraction. The adopted methodology for the plant performance calculation is setting a constant heat recuperator total conductance (UAtotal). The main conclusion of this work is that the power cycle thermodynamic efficiency improves by about 3–4%, on a scale comparable to increasing the turbine inlet temperature when the cycle utilizes the mentioned sCO2-mixtures as the working fluid. On one hand, the substances He, Kr, CH4, and C2H6 reduce the critical temperature to approximately 273.15 K; in this scenario, the thermal efficiency is improved from 49% to 53% with pure s-CO2. This solution is very suitable for concentrated solar power plants coupled to s-CO2 Brayton power cycles (CSP-sCO2) with night sky cooling. On the other hand, when adopting an air-cooled heat exchanger (dry-cooling) as the ultimate heat sink, the critical temperatures studied at compressor inlet are from 318.15 K to 333.15 K, for this scenario other substances (C3H8, C4H8, C4H10, C5H10, C5H12 and C6H6) were analyzed. Thermodynamic results confirmed that the Brayton cycle efficiency also increased by about 3–4%. Since the ambient temperature variation plays an important role in solar power plants with dry-cooling systems, a CIT sensitivity analysis was also conducted, which constitutes the first approach to defining the optimum working fluid mixture for a given operating condition.</description><identifier>ISSN: 2076-3417</identifier><identifier>EISSN: 2076-3417</identifier><identifier>DOI: 10.3390/app10010055</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Admixtures ; Ambient temperature ; Brayton cycle ; Carbon dioxide ; Coal-fired power plants ; Compressing ; Conductance ; Cooling ; Cooling systems ; Critical temperature ; Design parameters ; Efficiency ; Heat ; Heat conductivity ; Heat exchangers ; Heat sinks ; Heat transfer ; Hydrogen sulfide ; Inlet temperature ; Methane ; Night sky ; Nuclear power plants ; Power plants ; Regenerators ; Resistance ; Sensitivity analysis ; Software ; Solar collectors ; Solar energy ; Solar power ; Thermodynamic efficiency ; Trends ; Turbines ; Viscosity ; Working fluids</subject><ispartof>Applied sciences, 2020-01, Vol.10 (1), p.55</ispartof><rights>2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c298t-622cc1d3975d0a6dce3b8c923fc08a7048ff0160d9fb83d54868c75dd99e60dd3</citedby><cites>FETCH-LOGICAL-c298t-622cc1d3975d0a6dce3b8c923fc08a7048ff0160d9fb83d54868c75dd99e60dd3</cites><orcidid>0000-0003-1977-2118 ; 0000-0002-1980-0863 ; 0000-0002-3655-2654</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,860,27902,27903</link.rule.ids></links><search><creatorcontrib>Valencia-Chapi, Robert</creatorcontrib><creatorcontrib>Coco-Enríquez, Luis</creatorcontrib><creatorcontrib>Muñoz-Antón, Javier</creatorcontrib><title>Supercritical CO2 Mixtures for Advanced Brayton Power Cycles in Line-Focusing Solar Power Plants</title><title>Applied sciences</title><description>This work quantifies the impact of using sCO2-mixtures (s-CO2/He, s-CO2/Kr, s-CO2/H2S, s-CO2/CH4, s-CO2/C2H6, s-CO2/C3H8, s-CO2/C4H8, s-CO2/C4H10, s-CO2/C5H10, s-CO2/C5H12 and s-CO2/C6H6) as the working fluid in the supercritical CO2 recompression Brayton cycle coupled with line-focusing solar power plants (with parabolic trough collectors (PTC) or linear Fresnel (LF)). Design parameters assessed are the solar plant performance at the design point, heat exchange dimensions, solar field aperture area, and cost variations in relation with admixtures mole fraction. The adopted methodology for the plant performance calculation is setting a constant heat recuperator total conductance (UAtotal). The main conclusion of this work is that the power cycle thermodynamic efficiency improves by about 3–4%, on a scale comparable to increasing the turbine inlet temperature when the cycle utilizes the mentioned sCO2-mixtures as the working fluid. On one hand, the substances He, Kr, CH4, and C2H6 reduce the critical temperature to approximately 273.15 K; in this scenario, the thermal efficiency is improved from 49% to 53% with pure s-CO2. This solution is very suitable for concentrated solar power plants coupled to s-CO2 Brayton power cycles (CSP-sCO2) with night sky cooling. On the other hand, when adopting an air-cooled heat exchanger (dry-cooling) as the ultimate heat sink, the critical temperatures studied at compressor inlet are from 318.15 K to 333.15 K, for this scenario other substances (C3H8, C4H8, C4H10, C5H10, C5H12 and C6H6) were analyzed. Thermodynamic results confirmed that the Brayton cycle efficiency also increased by about 3–4%. Since the ambient temperature variation plays an important role in solar power plants with dry-cooling systems, a CIT sensitivity analysis was also conducted, which constitutes the first approach to defining the optimum working fluid mixture for a given operating condition.</description><subject>Admixtures</subject><subject>Ambient temperature</subject><subject>Brayton cycle</subject><subject>Carbon dioxide</subject><subject>Coal-fired power plants</subject><subject>Compressing</subject><subject>Conductance</subject><subject>Cooling</subject><subject>Cooling systems</subject><subject>Critical temperature</subject><subject>Design parameters</subject><subject>Efficiency</subject><subject>Heat</subject><subject>Heat conductivity</subject><subject>Heat exchangers</subject><subject>Heat sinks</subject><subject>Heat transfer</subject><subject>Hydrogen sulfide</subject><subject>Inlet temperature</subject><subject>Methane</subject><subject>Night sky</subject><subject>Nuclear power plants</subject><subject>Power plants</subject><subject>Regenerators</subject><subject>Resistance</subject><subject>Sensitivity analysis</subject><subject>Software</subject><subject>Solar collectors</subject><subject>Solar energy</subject><subject>Solar power</subject><subject>Thermodynamic efficiency</subject><subject>Trends</subject><subject>Turbines</subject><subject>Viscosity</subject><subject>Working fluids</subject><issn>2076-3417</issn><issn>2076-3417</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNpNkEtLAzEUhYMoWGpX_oGASxnNo5NJlnWwVai0UF2PaR6SMiZjMqP23xtpFz1cOIfLx71wALjG6I5Sge5l12GE8pTlGRgRVLGCTnF1fpIvwSSlHcoSmHKMRuB9M3Qmquh6p2QL6xWBL-63H6JJ0IYIZ_pbemU0fIhy3wcP1-HHRFjvVZsJ5-HSeVPMgxqS8x9wE1oZj8y6lb5PV-DCyjaZydHH4G3--Fo_FcvV4rmeLQtFBO8LRohSWFNRlRpJppWhW64EoVYhLis05dYizJAWdsupLqeccZVZLYTJW03H4OZwt4vhazCpb3ZhiD6_bEhJKS85YzxTtwdKxZBSNLbpovuUcd9g1Py32Jy0SP8AGGlkcQ</recordid><startdate>20200101</startdate><enddate>20200101</enddate><creator>Valencia-Chapi, Robert</creator><creator>Coco-Enríquez, Luis</creator><creator>Muñoz-Antón, Javier</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0003-1977-2118</orcidid><orcidid>https://orcid.org/0000-0002-1980-0863</orcidid><orcidid>https://orcid.org/0000-0002-3655-2654</orcidid></search><sort><creationdate>20200101</creationdate><title>Supercritical CO2 Mixtures for Advanced Brayton Power Cycles in Line-Focusing Solar Power Plants</title><author>Valencia-Chapi, Robert ; Coco-Enríquez, Luis ; Muñoz-Antón, Javier</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c298t-622cc1d3975d0a6dce3b8c923fc08a7048ff0160d9fb83d54868c75dd99e60dd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Admixtures</topic><topic>Ambient temperature</topic><topic>Brayton cycle</topic><topic>Carbon dioxide</topic><topic>Coal-fired power plants</topic><topic>Compressing</topic><topic>Conductance</topic><topic>Cooling</topic><topic>Cooling systems</topic><topic>Critical temperature</topic><topic>Design parameters</topic><topic>Efficiency</topic><topic>Heat</topic><topic>Heat conductivity</topic><topic>Heat exchangers</topic><topic>Heat sinks</topic><topic>Heat transfer</topic><topic>Hydrogen sulfide</topic><topic>Inlet temperature</topic><topic>Methane</topic><topic>Night sky</topic><topic>Nuclear power plants</topic><topic>Power plants</topic><topic>Regenerators</topic><topic>Resistance</topic><topic>Sensitivity analysis</topic><topic>Software</topic><topic>Solar collectors</topic><topic>Solar energy</topic><topic>Solar power</topic><topic>Thermodynamic efficiency</topic><topic>Trends</topic><topic>Turbines</topic><topic>Viscosity</topic><topic>Working fluids</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Valencia-Chapi, Robert</creatorcontrib><creatorcontrib>Coco-Enríquez, Luis</creatorcontrib><creatorcontrib>Muñoz-Antón, Javier</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Applied sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Valencia-Chapi, Robert</au><au>Coco-Enríquez, Luis</au><au>Muñoz-Antón, Javier</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Supercritical CO2 Mixtures for Advanced Brayton Power Cycles in Line-Focusing Solar Power Plants</atitle><jtitle>Applied sciences</jtitle><date>2020-01-01</date><risdate>2020</risdate><volume>10</volume><issue>1</issue><spage>55</spage><pages>55-</pages><issn>2076-3417</issn><eissn>2076-3417</eissn><abstract>This work quantifies the impact of using sCO2-mixtures (s-CO2/He, s-CO2/Kr, s-CO2/H2S, s-CO2/CH4, s-CO2/C2H6, s-CO2/C3H8, s-CO2/C4H8, s-CO2/C4H10, s-CO2/C5H10, s-CO2/C5H12 and s-CO2/C6H6) as the working fluid in the supercritical CO2 recompression Brayton cycle coupled with line-focusing solar power plants (with parabolic trough collectors (PTC) or linear Fresnel (LF)). Design parameters assessed are the solar plant performance at the design point, heat exchange dimensions, solar field aperture area, and cost variations in relation with admixtures mole fraction. The adopted methodology for the plant performance calculation is setting a constant heat recuperator total conductance (UAtotal). The main conclusion of this work is that the power cycle thermodynamic efficiency improves by about 3–4%, on a scale comparable to increasing the turbine inlet temperature when the cycle utilizes the mentioned sCO2-mixtures as the working fluid. On one hand, the substances He, Kr, CH4, and C2H6 reduce the critical temperature to approximately 273.15 K; in this scenario, the thermal efficiency is improved from 49% to 53% with pure s-CO2. This solution is very suitable for concentrated solar power plants coupled to s-CO2 Brayton power cycles (CSP-sCO2) with night sky cooling. On the other hand, when adopting an air-cooled heat exchanger (dry-cooling) as the ultimate heat sink, the critical temperatures studied at compressor inlet are from 318.15 K to 333.15 K, for this scenario other substances (C3H8, C4H8, C4H10, C5H10, C5H12 and C6H6) were analyzed. Thermodynamic results confirmed that the Brayton cycle efficiency also increased by about 3–4%. Since the ambient temperature variation plays an important role in solar power plants with dry-cooling systems, a CIT sensitivity analysis was also conducted, which constitutes the first approach to defining the optimum working fluid mixture for a given operating condition.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/app10010055</doi><orcidid>https://orcid.org/0000-0003-1977-2118</orcidid><orcidid>https://orcid.org/0000-0002-1980-0863</orcidid><orcidid>https://orcid.org/0000-0002-3655-2654</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2076-3417
ispartof Applied sciences, 2020-01, Vol.10 (1), p.55
issn 2076-3417
2076-3417
language eng
recordid cdi_proquest_journals_2533858668
source MDPI - Multidisciplinary Digital Publishing Institute; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals
subjects Admixtures
Ambient temperature
Brayton cycle
Carbon dioxide
Coal-fired power plants
Compressing
Conductance
Cooling
Cooling systems
Critical temperature
Design parameters
Efficiency
Heat
Heat conductivity
Heat exchangers
Heat sinks
Heat transfer
Hydrogen sulfide
Inlet temperature
Methane
Night sky
Nuclear power plants
Power plants
Regenerators
Resistance
Sensitivity analysis
Software
Solar collectors
Solar energy
Solar power
Thermodynamic efficiency
Trends
Turbines
Viscosity
Working fluids
title Supercritical CO2 Mixtures for Advanced Brayton Power Cycles in Line-Focusing Solar Power Plants
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T08%3A24%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Supercritical%20CO2%20Mixtures%20for%20Advanced%20Brayton%20Power%20Cycles%20in%20Line-Focusing%20Solar%20Power%20Plants&rft.jtitle=Applied%20sciences&rft.au=Valencia-Chapi,%20Robert&rft.date=2020-01-01&rft.volume=10&rft.issue=1&rft.spage=55&rft.pages=55-&rft.issn=2076-3417&rft.eissn=2076-3417&rft_id=info:doi/10.3390/app10010055&rft_dat=%3Cproquest_cross%3E2533858668%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2533858668&rft_id=info:pmid/&rfr_iscdi=true