Supercritical CO2 Mixtures for Advanced Brayton Power Cycles in Line-Focusing Solar Power Plants

This work quantifies the impact of using sCO2-mixtures (s-CO2/He, s-CO2/Kr, s-CO2/H2S, s-CO2/CH4, s-CO2/C2H6, s-CO2/C3H8, s-CO2/C4H8, s-CO2/C4H10, s-CO2/C5H10, s-CO2/C5H12 and s-CO2/C6H6) as the working fluid in the supercritical CO2 recompression Brayton cycle coupled with line-focusing solar power...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied sciences 2020-01, Vol.10 (1), p.55
Hauptverfasser: Valencia-Chapi, Robert, Coco-Enríquez, Luis, Muñoz-Antón, Javier
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This work quantifies the impact of using sCO2-mixtures (s-CO2/He, s-CO2/Kr, s-CO2/H2S, s-CO2/CH4, s-CO2/C2H6, s-CO2/C3H8, s-CO2/C4H8, s-CO2/C4H10, s-CO2/C5H10, s-CO2/C5H12 and s-CO2/C6H6) as the working fluid in the supercritical CO2 recompression Brayton cycle coupled with line-focusing solar power plants (with parabolic trough collectors (PTC) or linear Fresnel (LF)). Design parameters assessed are the solar plant performance at the design point, heat exchange dimensions, solar field aperture area, and cost variations in relation with admixtures mole fraction. The adopted methodology for the plant performance calculation is setting a constant heat recuperator total conductance (UAtotal). The main conclusion of this work is that the power cycle thermodynamic efficiency improves by about 3–4%, on a scale comparable to increasing the turbine inlet temperature when the cycle utilizes the mentioned sCO2-mixtures as the working fluid. On one hand, the substances He, Kr, CH4, and C2H6 reduce the critical temperature to approximately 273.15 K; in this scenario, the thermal efficiency is improved from 49% to 53% with pure s-CO2. This solution is very suitable for concentrated solar power plants coupled to s-CO2 Brayton power cycles (CSP-sCO2) with night sky cooling. On the other hand, when adopting an air-cooled heat exchanger (dry-cooling) as the ultimate heat sink, the critical temperatures studied at compressor inlet are from 318.15 K to 333.15 K, for this scenario other substances (C3H8, C4H8, C4H10, C5H10, C5H12 and C6H6) were analyzed. Thermodynamic results confirmed that the Brayton cycle efficiency also increased by about 3–4%. Since the ambient temperature variation plays an important role in solar power plants with dry-cooling systems, a CIT sensitivity analysis was also conducted, which constitutes the first approach to defining the optimum working fluid mixture for a given operating condition.
ISSN:2076-3417
2076-3417
DOI:10.3390/app10010055