Observation estimate for the heat equations with Neumann boundary condition via logarithmic convexity
We prove an inequality of H\"older type traducing the unique continuation property at one time for the heat equation with a potential and Neumann boundary condition. The main feature of the proof is to overcome the propagation of smallness by a global approach using a refined parabolic frequenc...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2021-05 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We prove an inequality of H\"older type traducing the unique continuation property at one time for the heat equation with a potential and Neumann boundary condition. The main feature of the proof is to overcome the propagation of smallness by a global approach using a refined parabolic frequency function method. It relies with a Carleman commutator estimate to obtain the logarithmic convexity property of the frequency function. |
---|---|
ISSN: | 2331-8422 |