Making sense of sensory input

This paper attempts to answer a central question in unsupervised learning: what does it mean to “make sense” of a sensory sequence? In our formalization, making sense involves constructing a symbolic causal theory that both explains the sensory sequence and also satisfies a set of unity conditions....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Artificial intelligence 2021-04, Vol.293, p.103438, Article 103438
Hauptverfasser: Evans, Richard, Hernández-Orallo, José, Welbl, Johannes, Kohli, Pushmeet, Sergot, Marek
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper attempts to answer a central question in unsupervised learning: what does it mean to “make sense” of a sensory sequence? In our formalization, making sense involves constructing a symbolic causal theory that both explains the sensory sequence and also satisfies a set of unity conditions. The unity conditions insist that the constituents of the causal theory – objects, properties, and laws – must be integrated into a coherent whole. On our account, making sense of sensory input is a type of program synthesis, but it is unsupervised program synthesis. Our second contribution is a computer implementation, the Apperception Engine, that was designed to satisfy the above requirements. Our system is able to produce interpretable human-readable causal theories from very small amounts of data, because of the strong inductive bias provided by the unity conditions. A causal theory produced by our system is able to predict future sensor readings, as well as retrodict earlier readings, and impute (fill in the blanks of) missing sensory readings, in any combination. In fact, it is able to do all three tasks simultaneously. We tested the engine in a diverse variety of domains, including cellular automata, rhythms and simple nursery tunes, multi-modal binding problems, occlusion tasks, and sequence induction intelligence tests. In each domain, we test our engine's ability to predict future sensor values, retrodict earlier sensor values, and impute missing sensory data. The Apperception Engine performs well in all these domains, significantly out-performing neural net baselines. We note in particular that in the sequence induction intelligence tests, our system achieved human-level performance. This is notable because our system is not a bespoke system designed specifically to solve intelligence tests, but a general-purpose system that was designed to make sense of any sensory sequence.
ISSN:0004-3702
1872-7921
DOI:10.1016/j.artint.2020.103438