Death Valley turtlebacks: Mesozoic contractional structures overprinted by Cenozoic extension and metamorphism beneath syn-extensional plutons

The term turtleback was first coined to describe the curvilinear fault surfaces that produced a distinctive geomorphic form in the Black Mountains east of Death Valley, and although it was decades before their full significance was appreciated, they remain one of the most distinctive features of the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IOP conference series. Earth and environmental science 2008-07, Vol.2 (1), p.012029
Hauptverfasser: Pavlis, T L, Miller, M, Serpa, L
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The term turtleback was first coined to describe the curvilinear fault surfaces that produced a distinctive geomorphic form in the Black Mountains east of Death Valley, and although it was decades before their full significance was appreciated, they remain one of the most distinctive features of the extensional structure of the Death Valley region. Historically the interpretation of the features has varied markedly, and misconceptions about their character continue to abound, including descriptions in popular field guides for the area. It the 1990's, however, the full history of the systems began to be apparent from several key data: 1) the dating of the plutonic assemblage associated with the turtlebacks demonstrated that late Miocene, syn-extensional plutonism was fundamental to their formation; 2) the plutonic assemblage forms an intrusive sheet structurally above the turtlebacks, indicating a tie between much of the high grade metamorphism and Cenozoic plutonism; 3) a modern analog for the syn-extensional plutonism in the Black Mountains was recognized beneath Death Valley with the imaging of a mid-crustal magma body; 4) the Neogene structural history was worked out in the turtlebacks showing that folding of early-formed shear zones formed the turtleback anticlinoria but overprinting by brittle faults produced the final form as they cut obliquely across the older structure; and 5) the pre-extensional structural history was clarified, demonstrating that Mesozoic basement-involved thrust systems are present within the turtlebacks, but have been overprinted by the extensional system. An unresolved issue is the significance of Eocene U-Pb dates for pegmatites within the region, but presumably these relate somehow to the pre-extensional history. Miller and Pavlis (2005; E. Sci. Rev.) reviewed many features of the turtlebacks, and our working model for the region is that the turtlebacks originated as mid-crustal ductile-thrust systems within the Cordilleran fold-thrust belts. Our work to the east of Death Valley suggests these thrusts were part of a NW trending thrust system that overprinted an older NE trending fold-thrust system that tracks into the Death Valley region from Nevada. These NW trending thrusts probably underlie all of the southern Black Mountains (south of the turtlebacks) and we suggest that pre-extensional structural relief along these basement thrusts placed basement at shallow crustal levels throughout what is now the Black Mountains; a c
ISSN:1755-1315
1755-1307
1755-1315
DOI:10.1088/1755-1307/2/1/012029