Some Refinements of Numerical Radius Inequalities

We propose some refinements for the second inequality in 1 2 A ≤ w A ≤ A , where A  ∈  B ( H ). In particular, if A is hyponormal, then, by refining the Young inequality with the Kantorovich constant K K (⋅, ⋅), we show that w A ≤ 1 2 inf x = 1 ζ x A + + A ∗ ≤ 1 2 A + A ∗ , where ζ x = K A x x A ∗ x...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Ukrainian mathematical journal 2021-03, Vol.72 (10), p.1664-1674
Hauptverfasser: Heydarbeygi, Z., Amyari, M., Khanehgir, M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We propose some refinements for the second inequality in 1 2 A ≤ w A ≤ A , where A  ∈  B ( H ). In particular, if A is hyponormal, then, by refining the Young inequality with the Kantorovich constant K K (⋅, ⋅), we show that w A ≤ 1 2 inf x = 1 ζ x A + + A ∗ ≤ 1 2 A + A ∗ , where ζ x = K A x x A ∗ x x 2 r , r = min λ 1 − λ , and 0 ≤ λ ≤ 1. We also give a reverse for the classical numerical radius power inequality w ( A n ) ≤  w n ( A ) for any operator A  ∈  B ( H ) case where n = 2 .
ISSN:0041-5995
1573-9376
DOI:10.1007/s11253-021-01879-1