Some Refinements of Numerical Radius Inequalities
We propose some refinements for the second inequality in 1 2 A ≤ w A ≤ A , where A ∈ B ( H ). In particular, if A is hyponormal, then, by refining the Young inequality with the Kantorovich constant K K (⋅, ⋅), we show that w A ≤ 1 2 inf x = 1 ζ x A + + A ∗ ≤ 1 2 A + A ∗ , where ζ x = K A x x A ∗ x...
Gespeichert in:
Veröffentlicht in: | Ukrainian mathematical journal 2021-03, Vol.72 (10), p.1664-1674 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We propose some refinements for the second inequality in
1
2
A
≤
w
A
≤
A
,
where
A
∈
B
(
H
). In particular, if
A
is hyponormal, then, by refining the Young inequality with the Kantorovich constant
K K
(⋅, ⋅), we show that
w
A
≤
1
2
inf
x
=
1
ζ
x
A
+
+
A
∗
≤
1
2
A
+
A
∗
,
where
ζ
x
=
K
A
x
x
A
∗
x
x
2
r
,
r
=
min
λ
1
−
λ
,
and 0 ≤ λ ≤ 1. We also give a reverse for the classical numerical radius power inequality
w
(
A
n
) ≤
w
n
(
A
) for any operator
A
∈
B
(
H
) case where
n
= 2
. |
---|---|
ISSN: | 0041-5995 1573-9376 |
DOI: | 10.1007/s11253-021-01879-1 |