Precipitation Forecasting Using Multilayer Neural Network and Support Vector Machine Optimization Based on Flow Regime Algorithm Taking into Account Uncertainties of Soft Computing Models
Drought, climate change, and demand make precipitation forecast a very important issue in water resource management. The present study aims to develop a forecasting model for monthly precipitation in the basin of the province of East Azarbaijan in Iran over a ten-year period using the multilayer per...
Gespeichert in:
Veröffentlicht in: | Sustainability 2019-12, Vol.11 (23), p.6681 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Drought, climate change, and demand make precipitation forecast a very important issue in water resource management. The present study aims to develop a forecasting model for monthly precipitation in the basin of the province of East Azarbaijan in Iran over a ten-year period using the multilayer perceptron neural network (MLP) and support vector regression (SVR) models. In this study, the flow regime optimization algorithm (FRA) was applied to optimize the multilayer neural network and support vector machine. The flow regime optimization algorithm not only identifies the parameters of the SVR and MLP models but also replaces the training algorithms. The decision tree model (M5T) was also used to forecast precipitation and compare it with the results of hybrid models. Principal component analysis (PCA) was used to identify effective indicators for precipitation forecast. In the first scenario, the input data include temperature data with a delay of one to twelve months, the second scenario includes precipitation data with a delay of one to twelve months, and the third scenario includes precipitation and temperature data with a delay of one to three months. The mean absolute error (MAE) and Nash–Sutcliffe error (NSE) indices were used to evaluate the performance of the models. The results showed that the proposed MLP–FRA outperformed all the other examined models. Regarding the uncertainties of the models, it was also shown that the MLP–FRA model had a lower uncertainty band width than other models, and a higher percentage of the data will fall within the range of the confidence band. As the selected scenario, Scenario 3 had a better performance. Finally, monthly precipitation maps were generated based on the MLP–FRA model and Scenario 3 using the weighted interpolation method, which showed significant precipitation in spring and winter and a low level of precipitation in summer. The results of the present study showed that MLP–FRA has high capability to predict hydrological variables and can be used in future research. |
---|---|
ISSN: | 2071-1050 2071-1050 |
DOI: | 10.3390/su11236681 |