Methodology of Temperature Monitoring in the Process of CNC Machining of Solid Wood

The issue of the change in tool temperature as a result of the machining process is presented in this paper. The aim of the paper is to put forward a proposal and subsequently to verify the methodology of temperature monitoring in the process of computer numerical control (CNC) machining in real tim...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Sustainability 2019-01, Vol.11 (1), p.95
Hauptverfasser: Igaz, Rastislav, Kminiak, Richard, Krišťák, Ľuboš, Němec, Miroslav, Gergeľ, Tomáš
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The issue of the change in tool temperature as a result of the machining process is presented in this paper. The aim of the paper is to put forward a proposal and subsequently to verify the methodology of temperature monitoring in the process of computer numerical control (CNC) machining in real time. Subsequently, the data can be used in the process of adaptive machine-tool control. Experiments were used to determine whether the research method is appropriate. Oak, beech and spruce wood turning blanks with the thickness of 20 mm were machined using a 5-axis CNC machining centre. A temperature change observation resulting from the changes in parameters of the removed layer was used to test whether the research method is relevant. Parameters of the removed layer were affected by the changes in feed rate in the range from 1 ÷ 5 m·min−1 in the removed layer (1–5 mm) or in wood species used in the experiment. As emerges from the proposed methodology, it is possible to monitor the changes in tool temperature responding to minimal changes in technological parameters on a relatively small size of a milled surface quite accurately. Sensitivity to given changes in technological parameters as well as the importance of the methodology was proven.
ISSN:2071-1050
2071-1050
DOI:10.3390/su11010095