Using isotopes to understand landscape‐scale connectivity in a groundwater‐dominated, lowland catchment under drought conditions

The Demnitzer Millcreek catchment (DMC), is a 66 km2 long‐term experimental catchment located 50 km SE of Berlin. Monitoring over the past 30 years has focused on hydrological and biogeochemical changes associated with de‐intensification of farming and riparian restoration in the low‐lying landscape...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Hydrological processes 2021-05, Vol.35 (5), p.n/a
Hauptverfasser: Kleine, Lukas, Tetzlaff, Doerthe, Smith, Aaron, Goldhammer, Tobias, Soulsby, Chris
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The Demnitzer Millcreek catchment (DMC), is a 66 km2 long‐term experimental catchment located 50 km SE of Berlin. Monitoring over the past 30 years has focused on hydrological and biogeochemical changes associated with de‐intensification of farming and riparian restoration in the low‐lying landscape dominated by rain‐fed farming and forestry. However, the hydrological function of the catchment, which is closely linked to nutrient fluxes and highly sensitive to climatic variability, is still poorly understood. In the last 3 years, a prolonged drought period with below‐average rainfall and above‐average temperatures has resulted in marked hydrological change. This caused low soil moisture storage in the growing season, agricultural yield losses, reduced groundwater recharge, and intermittent streamflows in parts of an increasingly disconnected channel network. This paper focuses on a two‐year long isotope study that sought to understand how different parts of the catchment affect ecohydrological partitioning, hydrological connectivity and streamflow generation during drought conditions. The work has shown the critical importance of groundwater storage in sustaining flows, basic in‐stream ecosystem services and the dominant influence of vegetation on groundwater recharge. Recharge was much lower and occurred during a shorter window of time in winter under forests compared to grasslands. Conversely, groundwater recharge was locally enhanced by the restoration of riparian wetlands and storage‐dependent water losses from the stream to the subsurface. The isotopic variability displayed complex emerging spatio‐temporal patterns of stream connectivity and flow duration during droughts that may have implications for in‐stream solute transport and future ecohydrological interactions between landscapes and riverscapes. Given climate projections for drier and warmer summers, reduced and increasingly intermittent streamflows are very likely not just in the study region, but in similar lowland areas across Europe. An integrated land and water management strategy will be essential to sustaining catchment ecosystem services in such catchment systems in future. Using a stable water isotope study conducted in a long‐term research catchment, we provided system scale process‐insight into landscape feedbacks to a prolonged dry period. We characterized the isotopic signal in precipitation, throughfall, soil, groundwater and stream water. We used the additional catchment‐scale pr
ISSN:0885-6087
1099-1085
DOI:10.1002/hyp.14197