New Explicitly Diagonalizable Hankel Matrices Related to the Stieltjes–Carlitz Polynomials

Four new examples of explicitly diagonalizable Hankel matrices depending on a parameter k ∈ ( 0 , 1 ) are presented. The Hankel matrices are regarded as matrix operators on the Hilbert space ℓ 2 ( N 0 ) and the solution of the spectral problem is based on an application of the commutator method. Eac...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Integral equations and operator theory 2021-06, Vol.93 (3), Article 29
Hauptverfasser: Štampach, František, Šťovíček, Pavel
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Four new examples of explicitly diagonalizable Hankel matrices depending on a parameter k ∈ ( 0 , 1 ) are presented. The Hankel matrices are regarded as matrix operators on the Hilbert space ℓ 2 ( N 0 ) and the solution of the spectral problem is based on an application of the commutator method. Each of the Hankel matrices commutes with a Jacobi matrix which is related to a particular family of the Stieltjes–Carlitz polynomials. More examples of explicitly diagonalizable structured matrix operators are obtained when taking into account also weighted Hankel matrices.
ISSN:0378-620X
1420-8989
DOI:10.1007/s00020-021-02638-4