New Explicitly Diagonalizable Hankel Matrices Related to the Stieltjes–Carlitz Polynomials
Four new examples of explicitly diagonalizable Hankel matrices depending on a parameter k ∈ ( 0 , 1 ) are presented. The Hankel matrices are regarded as matrix operators on the Hilbert space ℓ 2 ( N 0 ) and the solution of the spectral problem is based on an application of the commutator method. Eac...
Gespeichert in:
Veröffentlicht in: | Integral equations and operator theory 2021-06, Vol.93 (3), Article 29 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Four new examples of explicitly diagonalizable Hankel matrices depending on a parameter
k
∈
(
0
,
1
)
are presented. The Hankel matrices are regarded as matrix operators on the Hilbert space
ℓ
2
(
N
0
)
and the solution of the spectral problem is based on an application of the commutator method. Each of the Hankel matrices commutes with a Jacobi matrix which is related to a particular family of the Stieltjes–Carlitz polynomials. More examples of explicitly diagonalizable structured matrix operators are obtained when taking into account also weighted Hankel matrices. |
---|---|
ISSN: | 0378-620X 1420-8989 |
DOI: | 10.1007/s00020-021-02638-4 |