Experimental Study on Hydrothermal Polymerization Catalytic Process Effect of Various Biomass through a Pilot Plant

Through the previous study a hydrothermal polymerization (HTP)—a catalytic methodology for treating various biomass and organic wastes—has been developed on a lab scale with a 1 L reactor and the results published. The research work described herein aims to ensure that the catalytic process is scala...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Processes 2021-05, Vol.9 (5), p.758
Hauptverfasser: Mackintosh, Alexis F., Jung, Hyunchol, Kang, In-Kook, Yoo, Seongyeun, Kim, Sanggyu, Choe, Kangil
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Through the previous study a hydrothermal polymerization (HTP)—a catalytic methodology for treating various biomass and organic wastes—has been developed on a lab scale with a 1 L reactor and the results published. The research work described herein aims to ensure that the catalytic process is scalable for pilot and even commercial scale plants. A 1700 L binary reactor system has been built and the assumptions of a commercial scale plant that would have 10,000 to 20,000 L pressure vessels tested. The HTP catalytic biofuel process converts mono- and polysaccharides into a solid polymer fuel that is based on a furfuraldehyde ring system. The calorific value of the material obtained from the pilot plant is on the order of 27 MJ/kg and the material typically has low ash and fixed carbon content order of 48% which are about same as the lab results for various wood biomass feedstocks. Though a 1700 times scale up binary reactor system the scalability of the HTP catalytic methodology has been confirmed and the mass and energy balance of the binary reactor identified in order to provide fundamental data for commercial scale establishment in future.
ISSN:2227-9717
2227-9717
DOI:10.3390/pr9050758