A sharp integral inequality for closed spacelike submanifolds immersed in the de Sitter space
In this paper, we establish a sharp integral inequality for n -dimensional closed spacelike submanifolds with constant scalar curvature immersed with parallel normalized mean curvature vector field in the de Sitter space S p n + p of index p , and we use it to characterize totally umbilical round sp...
Gespeichert in:
Veröffentlicht in: | Archiv der Mathematik 2021-06, Vol.116 (6), p.683-691 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, we establish a sharp integral inequality for
n
-dimensional closed spacelike submanifolds with constant scalar curvature immersed with parallel normalized mean curvature vector field in the de Sitter space
S
p
n
+
p
of index
p
, and we use it to characterize totally umbilical round spheres
S
n
(
r
)
, with
r
>
1
, of
S
1
n
+
1
↪
S
p
n
+
p
. Our approach is based on a suitable lower estimate of the Cheng-Yau operator acting on the square norm of the traceless second fundamental form of such a spacelike submanifold. |
---|---|
ISSN: | 0003-889X 1420-8938 |
DOI: | 10.1007/s00013-021-01587-z |