A sharp integral inequality for closed spacelike submanifolds immersed in the de Sitter space

In this paper, we establish a sharp integral inequality for n -dimensional closed spacelike submanifolds with constant scalar curvature immersed with parallel normalized mean curvature vector field in the de Sitter space S p n + p of index p , and we use it to characterize totally umbilical round sp...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Archiv der Mathematik 2021-06, Vol.116 (6), p.683-691
Hauptverfasser: de Lima, Henrique F., dos Santos, Fábio R., Rocha, Lucas S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we establish a sharp integral inequality for n -dimensional closed spacelike submanifolds with constant scalar curvature immersed with parallel normalized mean curvature vector field in the de Sitter space S p n + p of index p , and we use it to characterize totally umbilical round spheres S n ( r ) , with r > 1 , of S 1 n + 1 ↪ S p n + p . Our approach is based on a suitable lower estimate of the Cheng-Yau operator acting on the square norm of the traceless second fundamental form of such a spacelike submanifold.
ISSN:0003-889X
1420-8938
DOI:10.1007/s00013-021-01587-z