Cluster realizations of Weyl groups and higher Teichmüller theory
For a symmetrizable Kac–Moody Lie algebra g , we construct a family of weighted quivers Q m ( g ) ( m ≥ 2 ) whose cluster modular group Γ Q m ( g ) contains the Weyl group W ( g ) as a subgroup. We compute explicit formulae for the corresponding cluster A - and X -transformations. As a result, we ob...
Gespeichert in:
Veröffentlicht in: | Selecta mathematica (Basel, Switzerland) Switzerland), 2021-07, Vol.27 (3), Article 37 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 3 |
container_start_page | |
container_title | Selecta mathematica (Basel, Switzerland) |
container_volume | 27 |
creator | Inoue, Rei Ishibashi, Tsukasa Oya, Hironori |
description | For a symmetrizable Kac–Moody Lie algebra
g
, we construct a family of weighted quivers
Q
m
(
g
)
(
m
≥
2
) whose cluster modular group
Γ
Q
m
(
g
)
contains the Weyl group
W
(
g
)
as a subgroup. We compute explicit formulae for the corresponding cluster
A
- and
X
-transformations. As a result, we obtain green sequences and the cluster Donaldson–Thomas transformation for
Q
m
(
g
)
in a systematic way when
g
is of finite type. Moreover if
g
is of classical finite type with the Coxeter number
h
, the quiver
Q
kh
(
g
)
(
k
≥
1
) is mutation-equivalent to a quiver encoding the cluster structure of the higher Teichmüller space of a once-punctured disk with 2
k
marked points on the boundary, up to frozen vertices. This correspondence induces the action of direct products of Weyl groups on the higher Teichmüller space of a general marked surface. We finally prove that this action coincides with the one constructed in Goncharov and Shen (Adv Math 327:225–348, 2018) from the geometrical viewpoint. |
doi_str_mv | 10.1007/s00029-021-00630-9 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2532139586</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2532139586</sourcerecordid><originalsourceid>FETCH-LOGICAL-c429t-b1d57405cf1d059b611dca9f86932748a852320044d24340cb92b4847ad9a1f63</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhoMouK7-AU8Fz9HJJP3IUYtfsOBlxWNI23TbpdvUpD2sv82bf8ysFbx5mnfgeWfgIeSSwTUDSG88AKCkgIwCJByoPCILJjAEQDgOGRApy1CckjPvtwFPEGFB7vJu8qNxkTO6az_02NreR7aO3sy-izbOToOPdF9FTbtpArY2bdnsvj67LixjY6zbn5OTWnfeXPzOJXl9uF_nT3T18vic365oKVCOtGBVnAqIy5pVEMsiYawqtayzRHJMRaazGDkCCFGh4ALKQmIhMpHqSmpWJ3xJrua7g7Pvk_Gj2trJ9eGlwpgj4zLODhTOVOms987UanDtTru9YqAOrtTsSgVX6seVkqHE55IPcL8x7u_0P61v9HJrfA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2532139586</pqid></control><display><type>article</type><title>Cluster realizations of Weyl groups and higher Teichmüller theory</title><source>SpringerLink Journals</source><creator>Inoue, Rei ; Ishibashi, Tsukasa ; Oya, Hironori</creator><creatorcontrib>Inoue, Rei ; Ishibashi, Tsukasa ; Oya, Hironori</creatorcontrib><description>For a symmetrizable Kac–Moody Lie algebra
g
, we construct a family of weighted quivers
Q
m
(
g
)
(
m
≥
2
) whose cluster modular group
Γ
Q
m
(
g
)
contains the Weyl group
W
(
g
)
as a subgroup. We compute explicit formulae for the corresponding cluster
A
- and
X
-transformations. As a result, we obtain green sequences and the cluster Donaldson–Thomas transformation for
Q
m
(
g
)
in a systematic way when
g
is of finite type. Moreover if
g
is of classical finite type with the Coxeter number
h
, the quiver
Q
kh
(
g
)
(
k
≥
1
) is mutation-equivalent to a quiver encoding the cluster structure of the higher Teichmüller space of a once-punctured disk with 2
k
marked points on the boundary, up to frozen vertices. This correspondence induces the action of direct products of Weyl groups on the higher Teichmüller space of a general marked surface. We finally prove that this action coincides with the one constructed in Goncharov and Shen (Adv Math 327:225–348, 2018) from the geometrical viewpoint.</description><identifier>ISSN: 1022-1824</identifier><identifier>EISSN: 1420-9020</identifier><identifier>DOI: 10.1007/s00029-021-00630-9</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Apexes ; Clusters ; Group theory ; Lie groups ; Mathematics ; Mathematics and Statistics ; Mutation ; Subgroups</subject><ispartof>Selecta mathematica (Basel, Switzerland), 2021-07, Vol.27 (3), Article 37</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Switzerland AG 2021</rights><rights>The Author(s), under exclusive licence to Springer Nature Switzerland AG 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c429t-b1d57405cf1d059b611dca9f86932748a852320044d24340cb92b4847ad9a1f63</citedby><cites>FETCH-LOGICAL-c429t-b1d57405cf1d059b611dca9f86932748a852320044d24340cb92b4847ad9a1f63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00029-021-00630-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00029-021-00630-9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Inoue, Rei</creatorcontrib><creatorcontrib>Ishibashi, Tsukasa</creatorcontrib><creatorcontrib>Oya, Hironori</creatorcontrib><title>Cluster realizations of Weyl groups and higher Teichmüller theory</title><title>Selecta mathematica (Basel, Switzerland)</title><addtitle>Sel. Math. New Ser</addtitle><description>For a symmetrizable Kac–Moody Lie algebra
g
, we construct a family of weighted quivers
Q
m
(
g
)
(
m
≥
2
) whose cluster modular group
Γ
Q
m
(
g
)
contains the Weyl group
W
(
g
)
as a subgroup. We compute explicit formulae for the corresponding cluster
A
- and
X
-transformations. As a result, we obtain green sequences and the cluster Donaldson–Thomas transformation for
Q
m
(
g
)
in a systematic way when
g
is of finite type. Moreover if
g
is of classical finite type with the Coxeter number
h
, the quiver
Q
kh
(
g
)
(
k
≥
1
) is mutation-equivalent to a quiver encoding the cluster structure of the higher Teichmüller space of a once-punctured disk with 2
k
marked points on the boundary, up to frozen vertices. This correspondence induces the action of direct products of Weyl groups on the higher Teichmüller space of a general marked surface. We finally prove that this action coincides with the one constructed in Goncharov and Shen (Adv Math 327:225–348, 2018) from the geometrical viewpoint.</description><subject>Apexes</subject><subject>Clusters</subject><subject>Group theory</subject><subject>Lie groups</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Mutation</subject><subject>Subgroups</subject><issn>1022-1824</issn><issn>1420-9020</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LxDAQhoMouK7-AU8Fz9HJJP3IUYtfsOBlxWNI23TbpdvUpD2sv82bf8ysFbx5mnfgeWfgIeSSwTUDSG88AKCkgIwCJByoPCILJjAEQDgOGRApy1CckjPvtwFPEGFB7vJu8qNxkTO6az_02NreR7aO3sy-izbOToOPdF9FTbtpArY2bdnsvj67LixjY6zbn5OTWnfeXPzOJXl9uF_nT3T18vic365oKVCOtGBVnAqIy5pVEMsiYawqtayzRHJMRaazGDkCCFGh4ALKQmIhMpHqSmpWJ3xJrua7g7Pvk_Gj2trJ9eGlwpgj4zLODhTOVOms987UanDtTru9YqAOrtTsSgVX6seVkqHE55IPcL8x7u_0P61v9HJrfA</recordid><startdate>20210701</startdate><enddate>20210701</enddate><creator>Inoue, Rei</creator><creator>Ishibashi, Tsukasa</creator><creator>Oya, Hironori</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20210701</creationdate><title>Cluster realizations of Weyl groups and higher Teichmüller theory</title><author>Inoue, Rei ; Ishibashi, Tsukasa ; Oya, Hironori</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c429t-b1d57405cf1d059b611dca9f86932748a852320044d24340cb92b4847ad9a1f63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Apexes</topic><topic>Clusters</topic><topic>Group theory</topic><topic>Lie groups</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Mutation</topic><topic>Subgroups</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Inoue, Rei</creatorcontrib><creatorcontrib>Ishibashi, Tsukasa</creatorcontrib><creatorcontrib>Oya, Hironori</creatorcontrib><collection>CrossRef</collection><jtitle>Selecta mathematica (Basel, Switzerland)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Inoue, Rei</au><au>Ishibashi, Tsukasa</au><au>Oya, Hironori</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cluster realizations of Weyl groups and higher Teichmüller theory</atitle><jtitle>Selecta mathematica (Basel, Switzerland)</jtitle><stitle>Sel. Math. New Ser</stitle><date>2021-07-01</date><risdate>2021</risdate><volume>27</volume><issue>3</issue><artnum>37</artnum><issn>1022-1824</issn><eissn>1420-9020</eissn><abstract>For a symmetrizable Kac–Moody Lie algebra
g
, we construct a family of weighted quivers
Q
m
(
g
)
(
m
≥
2
) whose cluster modular group
Γ
Q
m
(
g
)
contains the Weyl group
W
(
g
)
as a subgroup. We compute explicit formulae for the corresponding cluster
A
- and
X
-transformations. As a result, we obtain green sequences and the cluster Donaldson–Thomas transformation for
Q
m
(
g
)
in a systematic way when
g
is of finite type. Moreover if
g
is of classical finite type with the Coxeter number
h
, the quiver
Q
kh
(
g
)
(
k
≥
1
) is mutation-equivalent to a quiver encoding the cluster structure of the higher Teichmüller space of a once-punctured disk with 2
k
marked points on the boundary, up to frozen vertices. This correspondence induces the action of direct products of Weyl groups on the higher Teichmüller space of a general marked surface. We finally prove that this action coincides with the one constructed in Goncharov and Shen (Adv Math 327:225–348, 2018) from the geometrical viewpoint.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s00029-021-00630-9</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1022-1824 |
ispartof | Selecta mathematica (Basel, Switzerland), 2021-07, Vol.27 (3), Article 37 |
issn | 1022-1824 1420-9020 |
language | eng |
recordid | cdi_proquest_journals_2532139586 |
source | SpringerLink Journals |
subjects | Apexes Clusters Group theory Lie groups Mathematics Mathematics and Statistics Mutation Subgroups |
title | Cluster realizations of Weyl groups and higher Teichmüller theory |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T04%3A17%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cluster%20realizations%20of%20Weyl%20groups%20and%20higher%20Teichm%C3%BCller%20theory&rft.jtitle=Selecta%20mathematica%20(Basel,%20Switzerland)&rft.au=Inoue,%20Rei&rft.date=2021-07-01&rft.volume=27&rft.issue=3&rft.artnum=37&rft.issn=1022-1824&rft.eissn=1420-9020&rft_id=info:doi/10.1007/s00029-021-00630-9&rft_dat=%3Cproquest_cross%3E2532139586%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2532139586&rft_id=info:pmid/&rfr_iscdi=true |