Cluster realizations of Weyl groups and higher Teichmüller theory
For a symmetrizable Kac–Moody Lie algebra g , we construct a family of weighted quivers Q m ( g ) ( m ≥ 2 ) whose cluster modular group Γ Q m ( g ) contains the Weyl group W ( g ) as a subgroup. We compute explicit formulae for the corresponding cluster A - and X -transformations. As a result, we ob...
Gespeichert in:
Veröffentlicht in: | Selecta mathematica (Basel, Switzerland) Switzerland), 2021-07, Vol.27 (3), Article 37 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | For a symmetrizable Kac–Moody Lie algebra
g
, we construct a family of weighted quivers
Q
m
(
g
)
(
m
≥
2
) whose cluster modular group
Γ
Q
m
(
g
)
contains the Weyl group
W
(
g
)
as a subgroup. We compute explicit formulae for the corresponding cluster
A
- and
X
-transformations. As a result, we obtain green sequences and the cluster Donaldson–Thomas transformation for
Q
m
(
g
)
in a systematic way when
g
is of finite type. Moreover if
g
is of classical finite type with the Coxeter number
h
, the quiver
Q
kh
(
g
)
(
k
≥
1
) is mutation-equivalent to a quiver encoding the cluster structure of the higher Teichmüller space of a once-punctured disk with 2
k
marked points on the boundary, up to frozen vertices. This correspondence induces the action of direct products of Weyl groups on the higher Teichmüller space of a general marked surface. We finally prove that this action coincides with the one constructed in Goncharov and Shen (Adv Math 327:225–348, 2018) from the geometrical viewpoint. |
---|---|
ISSN: | 1022-1824 1420-9020 |
DOI: | 10.1007/s00029-021-00630-9 |