Hermitian manifolds with quasi-negative curvature

In this work, we show that along a particular choice of Hermitian curvature flow, the non-positivity of the first Ricci curvature will be preserved if the initial metric has Griffiths non-positive Chern curvature. If in addition, the first Ricci curvature is negative at a point, then the canonical l...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematische annalen 2021-06, Vol.380 (1-2), p.733-749
1. Verfasser: Lee, Man-Chun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this work, we show that along a particular choice of Hermitian curvature flow, the non-positivity of the first Ricci curvature will be preserved if the initial metric has Griffiths non-positive Chern curvature. If in addition, the first Ricci curvature is negative at a point, then the canonical line bundle is ample.
ISSN:0025-5831
1432-1807
DOI:10.1007/s00208-020-01997-4