Hermitian manifolds with quasi-negative curvature
In this work, we show that along a particular choice of Hermitian curvature flow, the non-positivity of the first Ricci curvature will be preserved if the initial metric has Griffiths non-positive Chern curvature. If in addition, the first Ricci curvature is negative at a point, then the canonical l...
Gespeichert in:
Veröffentlicht in: | Mathematische annalen 2021-06, Vol.380 (1-2), p.733-749 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this work, we show that along a particular choice of Hermitian curvature flow, the non-positivity of the first Ricci curvature will be preserved if the initial metric has Griffiths non-positive Chern curvature. If in addition, the first Ricci curvature is negative at a point, then the canonical line bundle is ample. |
---|---|
ISSN: | 0025-5831 1432-1807 |
DOI: | 10.1007/s00208-020-01997-4 |