RuP2-based hybrids derived from MOFs: highly efficient pH-universal electrocatalysts for the hydrogen evolution reaction
Rational design of efficient, low-cost, and durable electrocatalysts for the hydrogen evolution reaction (HER) in various pH media is highly desirable but remains challenging. Herein, for the first time, we present a novel hybrid of ruthenium diphosphide encapsulated in P-doped porous carbon (denote...
Gespeichert in:
Veröffentlicht in: | Journal of materials chemistry. A, Materials for energy and sustainability Materials for energy and sustainability, 2021-05, Vol.9 (20), p.12276-12282 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Rational design of efficient, low-cost, and durable electrocatalysts for the hydrogen evolution reaction (HER) in various pH media is highly desirable but remains challenging. Herein, for the first time, we present a novel hybrid of ruthenium diphosphide encapsulated in P-doped porous carbon (denoted as RuP2@PC) utilizing metal–organic frameworks (MOFs) as templates by a multi-step strategy. Unexpectedly, benefitting from the synergistic contribution of highly dispersed ultrafine RuP2 nanoparticles, porous carbon skeleton, and P-dopant, the as-synthesized RuP2@PC exhibits exceptional catalytic activity and superior durability as pH-universal electrocatalysts for the HER. Particularly, a low overpotential of 78.9 mV to deliver a current density of 10 mA cm−2 and a small Tafel slope of 36.7 mV dec−1 can be achieved in 1.0 M KOH toward the HER. Such outstanding electrocatalytic properties exceed those of commercial Pt/C and rank the catalyst among the best HER electrocatalysts reported until now. Importantly, this work paves a new route in elaborately fabricating efficient and stable electrocatalysts based on MOFs for energy-related fields. |
---|---|
ISSN: | 2050-7488 2050-7496 |
DOI: | 10.1039/d1ta01868j |