Affinoids in the Lubin–Tate perfectoid space and simple supercuspidal representations II: wild case
We construct a family of affinoids in the Lubin–Tate perfectoid space and their formal models such that the middle cohomology of their reductions realizes the local Langlands correspondence and the local Jacquet–Langlands correspondence for the simple supercuspidal representations. The reductions of...
Gespeichert in:
Veröffentlicht in: | Mathematische annalen 2021-06, Vol.380 (1-2), p.751-788 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 788 |
---|---|
container_issue | 1-2 |
container_start_page | 751 |
container_title | Mathematische annalen |
container_volume | 380 |
creator | Imai, Naoki Tsushima, Takahiro |
description | We construct a family of affinoids in the Lubin–Tate perfectoid space and their formal models such that the middle cohomology of their reductions realizes the local Langlands correspondence and the local Jacquet–Langlands correspondence for the simple supercuspidal representations. The reductions of the formal models are isomorphic to the perfections of some Artin–Schreier varieties, whose cohomology realizes primitive Galois representations. We show also the Tate conjecture for Artin–Schreier varieties associated to quadratic forms. |
doi_str_mv | 10.1007/s00208-020-02106-1 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2531567181</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2531567181</sourcerecordid><originalsourceid>FETCH-LOGICAL-c429t-8e6cfd19beaefd53efc5d3d007c2a691bfbf89464f4ea64dcea55b8a70460f523</originalsourceid><addsrcrecordid>eNp9UMtKxDAUDaLgOPoDrgKuqzdN04e7YfAxMOBmXIc0udEMnbQmLeLOf_AP_RKjI7hzcR9wHpd7CDlncMkAqqsIkEOdpZaKQZmxAzJjBc8zVkN1SGYJF5moOTsmJzFuAYADiBnBhbXO985E6jwdn5Gup9b5z_ePjRqRDhgs6jHhNA5KI1U-bW43dEjjlFA9xcEZ1dGAQ8CIflSj632kq9U1fXWdoVpFPCVHVnURz37nnDze3myW99n64W61XKwzXeTNmNVYamtY06JCawRHq4XhJj2oc1U2rLWtrZuiLGyBqiyMRiVEW6sKihKsyPmcXOx9h9C_TBhHue2n4NNJmQvORFmxmiVWvmfp0McY0MohuJ0Kb5KB_I5T7uOUqcmfOOW3iO9FMZH9E4Y_639UX1C9epY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2531567181</pqid></control><display><type>article</type><title>Affinoids in the Lubin–Tate perfectoid space and simple supercuspidal representations II: wild case</title><source>SpringerLink</source><creator>Imai, Naoki ; Tsushima, Takahiro</creator><creatorcontrib>Imai, Naoki ; Tsushima, Takahiro</creatorcontrib><description>We construct a family of affinoids in the Lubin–Tate perfectoid space and their formal models such that the middle cohomology of their reductions realizes the local Langlands correspondence and the local Jacquet–Langlands correspondence for the simple supercuspidal representations. The reductions of the formal models are isomorphic to the perfections of some Artin–Schreier varieties, whose cohomology realizes primitive Galois representations. We show also the Tate conjecture for Artin–Schreier varieties associated to quadratic forms.</description><identifier>ISSN: 0025-5831</identifier><identifier>EISSN: 1432-1807</identifier><identifier>DOI: 10.1007/s00208-020-02106-1</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Homology ; Mathematics ; Mathematics and Statistics ; Number theory ; Quadratic forms ; Representations</subject><ispartof>Mathematische annalen, 2021-06, Vol.380 (1-2), p.751-788</ispartof><rights>The Author(s) 2020</rights><rights>The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c429t-8e6cfd19beaefd53efc5d3d007c2a691bfbf89464f4ea64dcea55b8a70460f523</citedby><cites>FETCH-LOGICAL-c429t-8e6cfd19beaefd53efc5d3d007c2a691bfbf89464f4ea64dcea55b8a70460f523</cites><orcidid>0000-0003-2103-9847</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00208-020-02106-1$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00208-020-02106-1$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,27923,27924,41487,42556,51318</link.rule.ids></links><search><creatorcontrib>Imai, Naoki</creatorcontrib><creatorcontrib>Tsushima, Takahiro</creatorcontrib><title>Affinoids in the Lubin–Tate perfectoid space and simple supercuspidal representations II: wild case</title><title>Mathematische annalen</title><addtitle>Math. Ann</addtitle><description>We construct a family of affinoids in the Lubin–Tate perfectoid space and their formal models such that the middle cohomology of their reductions realizes the local Langlands correspondence and the local Jacquet–Langlands correspondence for the simple supercuspidal representations. The reductions of the formal models are isomorphic to the perfections of some Artin–Schreier varieties, whose cohomology realizes primitive Galois representations. We show also the Tate conjecture for Artin–Schreier varieties associated to quadratic forms.</description><subject>Homology</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Number theory</subject><subject>Quadratic forms</subject><subject>Representations</subject><issn>0025-5831</issn><issn>1432-1807</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><recordid>eNp9UMtKxDAUDaLgOPoDrgKuqzdN04e7YfAxMOBmXIc0udEMnbQmLeLOf_AP_RKjI7hzcR9wHpd7CDlncMkAqqsIkEOdpZaKQZmxAzJjBc8zVkN1SGYJF5moOTsmJzFuAYADiBnBhbXO985E6jwdn5Gup9b5z_ePjRqRDhgs6jHhNA5KI1U-bW43dEjjlFA9xcEZ1dGAQ8CIflSj632kq9U1fXWdoVpFPCVHVnURz37nnDze3myW99n64W61XKwzXeTNmNVYamtY06JCawRHq4XhJj2oc1U2rLWtrZuiLGyBqiyMRiVEW6sKihKsyPmcXOx9h9C_TBhHue2n4NNJmQvORFmxmiVWvmfp0McY0MohuJ0Kb5KB_I5T7uOUqcmfOOW3iO9FMZH9E4Y_639UX1C9epY</recordid><startdate>20210601</startdate><enddate>20210601</enddate><creator>Imai, Naoki</creator><creator>Tsushima, Takahiro</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-2103-9847</orcidid></search><sort><creationdate>20210601</creationdate><title>Affinoids in the Lubin–Tate perfectoid space and simple supercuspidal representations II: wild case</title><author>Imai, Naoki ; Tsushima, Takahiro</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c429t-8e6cfd19beaefd53efc5d3d007c2a691bfbf89464f4ea64dcea55b8a70460f523</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Homology</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Number theory</topic><topic>Quadratic forms</topic><topic>Representations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Imai, Naoki</creatorcontrib><creatorcontrib>Tsushima, Takahiro</creatorcontrib><collection>SpringerOpen</collection><collection>CrossRef</collection><jtitle>Mathematische annalen</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Imai, Naoki</au><au>Tsushima, Takahiro</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Affinoids in the Lubin–Tate perfectoid space and simple supercuspidal representations II: wild case</atitle><jtitle>Mathematische annalen</jtitle><stitle>Math. Ann</stitle><date>2021-06-01</date><risdate>2021</risdate><volume>380</volume><issue>1-2</issue><spage>751</spage><epage>788</epage><pages>751-788</pages><issn>0025-5831</issn><eissn>1432-1807</eissn><abstract>We construct a family of affinoids in the Lubin–Tate perfectoid space and their formal models such that the middle cohomology of their reductions realizes the local Langlands correspondence and the local Jacquet–Langlands correspondence for the simple supercuspidal representations. The reductions of the formal models are isomorphic to the perfections of some Artin–Schreier varieties, whose cohomology realizes primitive Galois representations. We show also the Tate conjecture for Artin–Schreier varieties associated to quadratic forms.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00208-020-02106-1</doi><tpages>38</tpages><orcidid>https://orcid.org/0000-0003-2103-9847</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0025-5831 |
ispartof | Mathematische annalen, 2021-06, Vol.380 (1-2), p.751-788 |
issn | 0025-5831 1432-1807 |
language | eng |
recordid | cdi_proquest_journals_2531567181 |
source | SpringerLink |
subjects | Homology Mathematics Mathematics and Statistics Number theory Quadratic forms Representations |
title | Affinoids in the Lubin–Tate perfectoid space and simple supercuspidal representations II: wild case |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T14%3A34%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Affinoids%20in%20the%20Lubin%E2%80%93Tate%20perfectoid%20space%20and%20simple%20supercuspidal%20representations%20II:%20wild%20case&rft.jtitle=Mathematische%20annalen&rft.au=Imai,%20Naoki&rft.date=2021-06-01&rft.volume=380&rft.issue=1-2&rft.spage=751&rft.epage=788&rft.pages=751-788&rft.issn=0025-5831&rft.eissn=1432-1807&rft_id=info:doi/10.1007/s00208-020-02106-1&rft_dat=%3Cproquest_cross%3E2531567181%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2531567181&rft_id=info:pmid/&rfr_iscdi=true |