Affinoids in the Lubin–Tate perfectoid space and simple supercuspidal representations II: wild case

We construct a family of affinoids in the Lubin–Tate perfectoid space and their formal models such that the middle cohomology of their reductions realizes the local Langlands correspondence and the local Jacquet–Langlands correspondence for the simple supercuspidal representations. The reductions of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematische annalen 2021-06, Vol.380 (1-2), p.751-788
Hauptverfasser: Imai, Naoki, Tsushima, Takahiro
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 788
container_issue 1-2
container_start_page 751
container_title Mathematische annalen
container_volume 380
creator Imai, Naoki
Tsushima, Takahiro
description We construct a family of affinoids in the Lubin–Tate perfectoid space and their formal models such that the middle cohomology of their reductions realizes the local Langlands correspondence and the local Jacquet–Langlands correspondence for the simple supercuspidal representations. The reductions of the formal models are isomorphic to the perfections of some Artin–Schreier varieties, whose cohomology realizes primitive Galois representations. We show also the Tate conjecture for Artin–Schreier varieties associated to quadratic forms.
doi_str_mv 10.1007/s00208-020-02106-1
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2531567181</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2531567181</sourcerecordid><originalsourceid>FETCH-LOGICAL-c429t-8e6cfd19beaefd53efc5d3d007c2a691bfbf89464f4ea64dcea55b8a70460f523</originalsourceid><addsrcrecordid>eNp9UMtKxDAUDaLgOPoDrgKuqzdN04e7YfAxMOBmXIc0udEMnbQmLeLOf_AP_RKjI7hzcR9wHpd7CDlncMkAqqsIkEOdpZaKQZmxAzJjBc8zVkN1SGYJF5moOTsmJzFuAYADiBnBhbXO985E6jwdn5Gup9b5z_ePjRqRDhgs6jHhNA5KI1U-bW43dEjjlFA9xcEZ1dGAQ8CIflSj632kq9U1fXWdoVpFPCVHVnURz37nnDze3myW99n64W61XKwzXeTNmNVYamtY06JCawRHq4XhJj2oc1U2rLWtrZuiLGyBqiyMRiVEW6sKihKsyPmcXOx9h9C_TBhHue2n4NNJmQvORFmxmiVWvmfp0McY0MohuJ0Kb5KB_I5T7uOUqcmfOOW3iO9FMZH9E4Y_639UX1C9epY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2531567181</pqid></control><display><type>article</type><title>Affinoids in the Lubin–Tate perfectoid space and simple supercuspidal representations II: wild case</title><source>SpringerLink</source><creator>Imai, Naoki ; Tsushima, Takahiro</creator><creatorcontrib>Imai, Naoki ; Tsushima, Takahiro</creatorcontrib><description>We construct a family of affinoids in the Lubin–Tate perfectoid space and their formal models such that the middle cohomology of their reductions realizes the local Langlands correspondence and the local Jacquet–Langlands correspondence for the simple supercuspidal representations. The reductions of the formal models are isomorphic to the perfections of some Artin–Schreier varieties, whose cohomology realizes primitive Galois representations. We show also the Tate conjecture for Artin–Schreier varieties associated to quadratic forms.</description><identifier>ISSN: 0025-5831</identifier><identifier>EISSN: 1432-1807</identifier><identifier>DOI: 10.1007/s00208-020-02106-1</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Homology ; Mathematics ; Mathematics and Statistics ; Number theory ; Quadratic forms ; Representations</subject><ispartof>Mathematische annalen, 2021-06, Vol.380 (1-2), p.751-788</ispartof><rights>The Author(s) 2020</rights><rights>The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c429t-8e6cfd19beaefd53efc5d3d007c2a691bfbf89464f4ea64dcea55b8a70460f523</citedby><cites>FETCH-LOGICAL-c429t-8e6cfd19beaefd53efc5d3d007c2a691bfbf89464f4ea64dcea55b8a70460f523</cites><orcidid>0000-0003-2103-9847</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00208-020-02106-1$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00208-020-02106-1$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,27923,27924,41487,42556,51318</link.rule.ids></links><search><creatorcontrib>Imai, Naoki</creatorcontrib><creatorcontrib>Tsushima, Takahiro</creatorcontrib><title>Affinoids in the Lubin–Tate perfectoid space and simple supercuspidal representations II: wild case</title><title>Mathematische annalen</title><addtitle>Math. Ann</addtitle><description>We construct a family of affinoids in the Lubin–Tate perfectoid space and their formal models such that the middle cohomology of their reductions realizes the local Langlands correspondence and the local Jacquet–Langlands correspondence for the simple supercuspidal representations. The reductions of the formal models are isomorphic to the perfections of some Artin–Schreier varieties, whose cohomology realizes primitive Galois representations. We show also the Tate conjecture for Artin–Schreier varieties associated to quadratic forms.</description><subject>Homology</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Number theory</subject><subject>Quadratic forms</subject><subject>Representations</subject><issn>0025-5831</issn><issn>1432-1807</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><recordid>eNp9UMtKxDAUDaLgOPoDrgKuqzdN04e7YfAxMOBmXIc0udEMnbQmLeLOf_AP_RKjI7hzcR9wHpd7CDlncMkAqqsIkEOdpZaKQZmxAzJjBc8zVkN1SGYJF5moOTsmJzFuAYADiBnBhbXO985E6jwdn5Gup9b5z_ePjRqRDhgs6jHhNA5KI1U-bW43dEjjlFA9xcEZ1dGAQ8CIflSj632kq9U1fXWdoVpFPCVHVnURz37nnDze3myW99n64W61XKwzXeTNmNVYamtY06JCawRHq4XhJj2oc1U2rLWtrZuiLGyBqiyMRiVEW6sKihKsyPmcXOx9h9C_TBhHue2n4NNJmQvORFmxmiVWvmfp0McY0MohuJ0Kb5KB_I5T7uOUqcmfOOW3iO9FMZH9E4Y_639UX1C9epY</recordid><startdate>20210601</startdate><enddate>20210601</enddate><creator>Imai, Naoki</creator><creator>Tsushima, Takahiro</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-2103-9847</orcidid></search><sort><creationdate>20210601</creationdate><title>Affinoids in the Lubin–Tate perfectoid space and simple supercuspidal representations II: wild case</title><author>Imai, Naoki ; Tsushima, Takahiro</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c429t-8e6cfd19beaefd53efc5d3d007c2a691bfbf89464f4ea64dcea55b8a70460f523</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Homology</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Number theory</topic><topic>Quadratic forms</topic><topic>Representations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Imai, Naoki</creatorcontrib><creatorcontrib>Tsushima, Takahiro</creatorcontrib><collection>SpringerOpen</collection><collection>CrossRef</collection><jtitle>Mathematische annalen</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Imai, Naoki</au><au>Tsushima, Takahiro</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Affinoids in the Lubin–Tate perfectoid space and simple supercuspidal representations II: wild case</atitle><jtitle>Mathematische annalen</jtitle><stitle>Math. Ann</stitle><date>2021-06-01</date><risdate>2021</risdate><volume>380</volume><issue>1-2</issue><spage>751</spage><epage>788</epage><pages>751-788</pages><issn>0025-5831</issn><eissn>1432-1807</eissn><abstract>We construct a family of affinoids in the Lubin–Tate perfectoid space and their formal models such that the middle cohomology of their reductions realizes the local Langlands correspondence and the local Jacquet–Langlands correspondence for the simple supercuspidal representations. The reductions of the formal models are isomorphic to the perfections of some Artin–Schreier varieties, whose cohomology realizes primitive Galois representations. We show also the Tate conjecture for Artin–Schreier varieties associated to quadratic forms.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00208-020-02106-1</doi><tpages>38</tpages><orcidid>https://orcid.org/0000-0003-2103-9847</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0025-5831
ispartof Mathematische annalen, 2021-06, Vol.380 (1-2), p.751-788
issn 0025-5831
1432-1807
language eng
recordid cdi_proquest_journals_2531567181
source SpringerLink
subjects Homology
Mathematics
Mathematics and Statistics
Number theory
Quadratic forms
Representations
title Affinoids in the Lubin–Tate perfectoid space and simple supercuspidal representations II: wild case
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T14%3A34%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Affinoids%20in%20the%20Lubin%E2%80%93Tate%20perfectoid%20space%20and%20simple%20supercuspidal%20representations%20II:%20wild%20case&rft.jtitle=Mathematische%20annalen&rft.au=Imai,%20Naoki&rft.date=2021-06-01&rft.volume=380&rft.issue=1-2&rft.spage=751&rft.epage=788&rft.pages=751-788&rft.issn=0025-5831&rft.eissn=1432-1807&rft_id=info:doi/10.1007/s00208-020-02106-1&rft_dat=%3Cproquest_cross%3E2531567181%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2531567181&rft_id=info:pmid/&rfr_iscdi=true