Affinoids in the Lubin–Tate perfectoid space and simple supercuspidal representations II: wild case
We construct a family of affinoids in the Lubin–Tate perfectoid space and their formal models such that the middle cohomology of their reductions realizes the local Langlands correspondence and the local Jacquet–Langlands correspondence for the simple supercuspidal representations. The reductions of...
Gespeichert in:
Veröffentlicht in: | Mathematische annalen 2021-06, Vol.380 (1-2), p.751-788 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We construct a family of affinoids in the Lubin–Tate perfectoid space and their formal models such that the middle cohomology of their reductions realizes the local Langlands correspondence and the local Jacquet–Langlands correspondence for the simple supercuspidal representations. The reductions of the formal models are isomorphic to the perfections of some Artin–Schreier varieties, whose cohomology realizes primitive Galois representations. We show also the Tate conjecture for Artin–Schreier varieties associated to quadratic forms. |
---|---|
ISSN: | 0025-5831 1432-1807 |
DOI: | 10.1007/s00208-020-02106-1 |