Affinoids in the Lubin–Tate perfectoid space and simple supercuspidal representations II: wild case

We construct a family of affinoids in the Lubin–Tate perfectoid space and their formal models such that the middle cohomology of their reductions realizes the local Langlands correspondence and the local Jacquet–Langlands correspondence for the simple supercuspidal representations. The reductions of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematische annalen 2021-06, Vol.380 (1-2), p.751-788
Hauptverfasser: Imai, Naoki, Tsushima, Takahiro
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We construct a family of affinoids in the Lubin–Tate perfectoid space and their formal models such that the middle cohomology of their reductions realizes the local Langlands correspondence and the local Jacquet–Langlands correspondence for the simple supercuspidal representations. The reductions of the formal models are isomorphic to the perfections of some Artin–Schreier varieties, whose cohomology realizes primitive Galois representations. We show also the Tate conjecture for Artin–Schreier varieties associated to quadratic forms.
ISSN:0025-5831
1432-1807
DOI:10.1007/s00208-020-02106-1