A class of rings with the 2-sum property

Recall that a ring satisfies the 2-sum property if each of its elements is a sum of two units. Here a ring R is said to satisfy the binary 2-sum property if, for any a ,  b in R , there exists a unit u of R such that both a - u and b - u are units. A well-known result, due to Goldsmith, Pabst and Sc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applicable algebra in engineering, communication and computing communication and computing, 2021-06, Vol.32 (3), p.399-408
Hauptverfasser: Koşan, M. Tamer, Zhou, Yiqiang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Recall that a ring satisfies the 2-sum property if each of its elements is a sum of two units. Here a ring R is said to satisfy the binary 2-sum property if, for any a ,  b in R , there exists a unit u of R such that both a - u and b - u are units. A well-known result, due to Goldsmith, Pabst and Scot, states that a semilocal ring satisfies the 2-sum property iff it has no image isomorphic to Z 2 . It is proved here that a semilocal ring satisfies the binary 2-sum property iff it has no image isomorphic to Z 2 or Z 3 or M 2 ( Z 2 ) .
ISSN:0938-1279
1432-0622
DOI:10.1007/s00200-021-00490-y