Bohr radius for certain classes of close-to-convex harmonic mappings
Let H be the class of harmonic functions f = h + g ¯ in the unit disk D : = { z ∈ C : | z | < 1 } , where h and g are analytic in D . Let P H 0 ( α ) = { f = h + g ¯ ∈ H : Re ( h ′ ( z ) - α ) > | g ′ ( z ) | with 0 ≤ α < 1 , g ′ ( 0 ) = 0 , z ∈ D } be the class of close-to-convex mappings...
Gespeichert in:
Veröffentlicht in: | Analysis and mathematical physics 2021-09, Vol.11 (3), Article 111 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let
H
be the class of harmonic functions
f
=
h
+
g
¯
in the unit disk
D
:
=
{
z
∈
C
:
|
z
|
<
1
}
, where
h
and
g
are analytic in
D
. Let
P
H
0
(
α
)
=
{
f
=
h
+
g
¯
∈
H
:
Re
(
h
′
(
z
)
-
α
)
>
|
g
′
(
z
)
|
with
0
≤
α
<
1
,
g
′
(
0
)
=
0
,
z
∈
D
}
be the class of close-to-convex mappings defined by Li and Ponnusamy (Nonlinear Anal 89:276–283, 2013). In this paper, we obtain the sharp Bohr–Rogosinski radius, improved Bohr radius and refined Bohr radius for the class
P
H
0
(
α
)
. |
---|---|
ISSN: | 1664-2368 1664-235X |
DOI: | 10.1007/s13324-021-00551-y |