Bohr radius for certain classes of close-to-convex harmonic mappings

Let H be the class of harmonic functions f = h + g ¯ in the unit disk D : = { z ∈ C : | z | < 1 } , where h and g are analytic in D . Let P H 0 ( α ) = { f = h + g ¯ ∈ H : Re ( h ′ ( z ) - α ) > | g ′ ( z ) | with 0 ≤ α < 1 , g ′ ( 0 ) = 0 , z ∈ D } be the class of close-to-convex mappings...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Analysis and mathematical physics 2021-09, Vol.11 (3), Article 111
Hauptverfasser: Ahamed, Molla Basir, Allu, Vasudevarao, Halder, Himadri
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let H be the class of harmonic functions f = h + g ¯ in the unit disk D : = { z ∈ C : | z | < 1 } , where h and g are analytic in D . Let P H 0 ( α ) = { f = h + g ¯ ∈ H : Re ( h ′ ( z ) - α ) > | g ′ ( z ) | with 0 ≤ α < 1 , g ′ ( 0 ) = 0 , z ∈ D } be the class of close-to-convex mappings defined by Li and Ponnusamy (Nonlinear Anal 89:276–283, 2013). In this paper, we obtain the sharp Bohr–Rogosinski radius, improved Bohr radius and refined Bohr radius for the class P H 0 ( α ) .
ISSN:1664-2368
1664-235X
DOI:10.1007/s13324-021-00551-y