MOSDA: On-Chip Memory Optimized Sparse Deep Neural Network Accelerator With Efficient Index Matching

The irregular data access pattern caused by sparsity brings great challenges to efficient processing accelerators. Focusing on the index-matching property in DNN, this article aims to decompose sparse DNN processing into easy-to-handle processing tasks to maintain the utilization of processing eleme...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE open journal of circuits and systems 2021, Vol.2, p.144-155
Hauptverfasser: Xu, Hongjie, Shiomi, Jun, Onodera, Hidetoshi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The irregular data access pattern caused by sparsity brings great challenges to efficient processing accelerators. Focusing on the index-matching property in DNN, this article aims to decompose sparse DNN processing into easy-to-handle processing tasks to maintain the utilization of processing elements. According to the proposed sparse processing dataflow, this article proposes an efficient general-purpose hardware accelerator called MOSDA, which can be effectively applied for operations of convolutional layers, fully-connected layers, and matrix multiplications. Compared to the state-of-art CNN accelerators, MOSDA achieves 1.1 \times better throughput and 2.1 \times better energy efficiency than Eyeriss v2 in sparse Alexnet in our case study.
ISSN:2644-1225
2644-1225
DOI:10.1109/OJCAS.2020.3035402