Synergistic Effects of Co3O4-CeO2 Nanoparticles towards Catalytic Oxidation of Aromatic Hydrocarbons: A Study in Association with Carbon Monoxide and Humidity

In this study, a series of Co3O4-CeO2 nanocomposites with various Co3O4 loading were fabricated by the impregnation method using cobalt(II) acetate as the cobalt precursor for the treatment of benzene, toluene, ethylbenzene, and xylene (BTEX). The as-prepared Co3O4-CeO2 nanocomposites were thoroughl...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of nanomaterials 2021-05, Vol.2021, p.1-9
Hauptverfasser: Dang-Bao, Trung, Phan, Hong Phuong, Nguyen, Phung Anh, Vo, Pham Phuong Trang, Huynh, Van Tien, Nguyen, Tri
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this study, a series of Co3O4-CeO2 nanocomposites with various Co3O4 loading were fabricated by the impregnation method using cobalt(II) acetate as the cobalt precursor for the treatment of benzene, toluene, ethylbenzene, and xylene (BTEX). The as-prepared Co3O4-CeO2 nanocomposites were thoroughly characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), Brumauer-Emmett-Teller (BET), hydrogen temperature-programmed reduction (H2-TPR), and temperature-programmed desorption (O2-TPD). The excellent reproduction of active oxygen species caused by the high dispersion of Co3O4 crystals on the CeO2 supports was established. In addition, the reduction peaks of Co3O4-CeO2 nanocomposites were found at much lower temperatures compared to pure CeO2, considering their unique redox property influencing on the high catalytic activity. Among the characterized materials, the 5.0 wt.% Co3O4 supported on CeO2 (5.0Co–Ce) was the best system for catalytic oxidation of xylene, along with excellent performances in the cases of benzene, ethylbenzene, and toluene. Its catalytic activity increased in the order: benzene
ISSN:1687-4110
1687-4129
DOI:10.1155/2021/5542281