N -methyl-d-aspartate receptor hyperfunction contributes to d-serine-mediated renal insufficiency

Glutamate -methyl-d-aspartate receptor (NMDAR) hyperfunction is known to contribute to acute renal failure due to ischemia-reperfusion and endotoxemia. d-Serine is a coagonist for NMDAR activation, but whether NMDARs play a role in d-serine-mediated nephrotoxicity remains unclear. Here, we demonstra...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:American journal of physiology. Renal physiology 2021-05, Vol.320 (5), p.F799-F813
Hauptverfasser: Tseng, Yi-Shiou, Liao, Chun-Hou, Wu, Wen-Bin, Ma, Ming-Chieh
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Glutamate -methyl-d-aspartate receptor (NMDAR) hyperfunction is known to contribute to acute renal failure due to ischemia-reperfusion and endotoxemia. d-Serine is a coagonist for NMDAR activation, but whether NMDARs play a role in d-serine-mediated nephrotoxicity remains unclear. Here, we demonstrate that NMDAR blockade ameliorated d-serine-induced renal injury. In NMDAR-expressing LLC-PK cells, which were used as a proximal tubule model, d-serine but not l-serine induced cytotoxicity in a dose-dependent manner, which was abrogated by the selective NMDAR blockers MK-801 and AP-5. Time-dependent oxidative stress, evidenced by gradually increased superoxide and H O production, was associated with d-serine-mediated cytotoxicity; these reactive oxygen species could be alleviated not only after NMDAR inhibition but also by NADPH oxidase (NOX) inhibition. Activation of protein kinase C (PKC)-δ and PKC-ζ is a downstream signal for NMDAR-mediated NOX activation because PKC inhibition diminishes the NOX activity that is induced by d-serine. Renal injury was further confirmed in male Wistar rats that intraperitoneally received d-serine but not l-serine. Peak changes in glucosuria, proteinuria, and urinary excretion of lactate dehydrogenase and malondialdehyde were found after 24 h of treatment. Persistent tubular damage was observed after 7 days of treatment. Cotreatment with the NMDAR blocker MK-801 for 24 h abolished d-serine-induced functional insufficiency and tubular damage. MK-801 attenuated renal superoxide formation by lowering NOX activity and protein upregulation of NOX4 but not NOX2. These results reveal that NMDAR hyperfunction underlies d-serine-induced renal injury via the effects of NOX4 on triggering oxidative stress. Ionotropic -methyl-d-aspartate receptors (NMDARs) are not only present in the nervous system but also expressed in the kidney. Overstimulation of renal NMDARs leads to oxidative stress via the signal pathway of calcium/protein kinase C/NADPH oxidase in d-serine-mediated tubular cell damage. Intervention of NMDAR blockade may prevent acute renal injury caused by d-serine.
ISSN:1931-857X
1522-1466
DOI:10.1152/ajprenal.00461.2020