A multi-objective optimization model for sustainable supply chain network with using genetic algorithm
Purpose The purpose of this paper is to design and optimize economic and environmental dimensions in a sustainable supply chain (SSC) network. This paper developed a mixed-integer linear programing (MILP) model to incorporate economical and environmental data for multi-objective optimization of the...
Gespeichert in:
Veröffentlicht in: | Journal of modelling in management 2021-05, Vol.16 (2), p.714-727 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Purpose
The purpose of this paper is to design and optimize economic and environmental dimensions in a sustainable supply chain (SSC) network. This paper developed a mixed-integer linear programing (MILP) model to incorporate economical and environmental data for multi-objective optimization of the SSC network.
Design/methodology/approach
The overall objective of the present study is to use high-quality raw materials, at the same time the lowest amount of pollution emission and the highest profitability is achieved. The model in the problem is solved using two algorithms, namely, multi-objective genetic and multi-objective particle swarm. In this research, to integrate sustainable supplier selection and optimization of sustainability performance indicators in supply chain network design considering minimization of cost and time and maximization of sustainability indexes of the system.
Findings
The differences found between the genetic algorithms (GAs) and the MILP approaches can be explained by handling the constraints and their various logics. The solutions are contrasted with the original crisp model based on either MILP or GA, offering more robustness to the proposed approach.
Practical implications
The model is applied to Mega Motor company to optimize the sustainability performance of the supply chain i.e. economic (cost), social (time) and environmental (pollution of raw material). The research method has two approaches, namely, applied and mathematical modeling.
Originality/value
There is limited research designing and optimizing the SSC network. This study is among the first to integrate sustainable supplier selection and optimization of sustainability performance indicators in supply chain network design considering minimization of cost and time and maximization of sustainability indexes of the system. |
---|---|
ISSN: | 1746-5664 1746-5672 |
DOI: | 10.1108/JM2-06-2020-0150 |