Study of the Hydrodynamic Unsteady Flow Inside a Centrifugal Fan and Its Downstream Pipe Using Detached Eddy Simulation

The detailed unsteady turbulent flow inside a centrifugal fan and its downstream pipe was studied using detached eddy simulation (DES) at three flowrates, namely, the best efficiency point (BEP), 0.75BEP, and 1.49BEP. Both the mean and fluctuating flow fields were analyzed on the basis of the root-m...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Sustainability 2021-05, Vol.13 (9), p.5113
Hauptverfasser: Cai, Jian-Cheng, Chen, Hao-Jie, Brazhenko, Volodymyr, Gu, Yi-Hong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The detailed unsteady turbulent flow inside a centrifugal fan and its downstream pipe was studied using detached eddy simulation (DES) at three flowrates, namely, the best efficiency point (BEP), 0.75BEP, and 1.49BEP. Both the mean and fluctuating flow fields were analyzed on the basis of the root-mean-square value as the indication of fluctuating intensity. Results showed that the pressure fluctuation had the minimum value at BEP, but the velocity fluctuation increased with the flowrate. Most regions inside the centrifugal fan underwent large pressure fluctuation with the magnitude of about 10~20% of pref = 0.5 ρu22, where u2 is the blade velocity at the impeller outlet. The pressure fluctuation had a maximum value at the impeller side of the tongue tip rather than the stagnation point, and it decreased rapidly along the outlet pipe with magnitude about 1% of pref after distance of five pipe diameters. The spectra of hydrodynamic pressure showed conspicuous spikes at the blade passing frequency (BPF) in the volute but not in the downstream pipe. At the downstream pipe entrance, pressure fluctuation spectra agreed with experimental results, showing that hydrodynamic pressure fluctuations were dominant; however, the experimental data showed a much slower decreasing rate due to the acoustic fluctuations.
ISSN:2071-1050
2071-1050
DOI:10.3390/su13095113