Towards Scalable and Efficient Architecture for Modeling Trust in IoT Environments

The (IoS) is gaining ground where cloud environments are utilized to create, subscribe, publish, and share services. The fast and significant evolution of IoS is affecting various aspects in people's life and is enabling a wide spectrum of services and applications ranging from smart e-health,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Sensors (Basel, Switzerland) Switzerland), 2021-04, Vol.21 (9), p.2986
Hauptverfasser: Ghaleb, Mustafa, Azzedin, Farag
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The (IoS) is gaining ground where cloud environments are utilized to create, subscribe, publish, and share services. The fast and significant evolution of IoS is affecting various aspects in people's life and is enabling a wide spectrum of services and applications ranging from smart e-health, smart homes, to smart surveillance. Building trusted IoT environments is of great importance to achieve the full benefits of IoS. In addition, building trusted IoT environments mitigates unrecoverable and unexpected damages in order to create reliable, efficient, stable, and flexible smart IoS-driven systems. Therefore, ensuring trust will provide the confidence and belief that IoT devices and consequently IoS behave as expected. Before hosting trust models, suitable architecture for Fog computing is needed to provide scalability, fast data access, simple and efficient intra-communication, load balancing, decentralization, and availability. In this article, we propose scalable and efficient Chord-based horizontal architecture. We also show how trust modeling can be mapped to our proposed architecture. Extensive performance evaluation experiments have been conducted to evaluate the performance and the feasibility and also to verify the behavior of our proposed architecture.
ISSN:1424-8220
1424-8220
DOI:10.3390/s21092986